Article
Keywords:
irrationals; $f$-cone; weak $f$-cone; $n$-splitting compact set
Summary:
This paper deals with questions of how many compact subsets of certain kinds it takes to cover the space $^\omega \omega $ of irrationals, or certain of its subspaces. In particular, given $f\in {}^\omega (\omega \setminus \{0\})$, we consider compact sets of the form $\prod_{i\in \omega }B_i$, where $|B_i|= f(i)$ for all, or for infinitely many, $i$. We also consider ``$n$-splitting'' compact sets, i.e., compact sets $K$ such that for any $f\in K$ and $i\in \omega $, $|\{g(i):g\in K, g\restriction i=f\restriction i\}|= n$.
Related articles:
References:
                        
[BJ] Bartoszyński T., Judah H.: 
Set Theory: On the Structure of the Real Line. A K Peters, 1995. 
MR 1350295[BL] Baumgartner J., Laver R.: 
Iterated perfect-set forcing. Ann. Math. Logic 17 (1979), 3 271-288. 
MR 0556894 | 
Zbl 0427.03043[CN] Comfort W.W., Negrepontis S.: 
Theory of Ultrafilters. Springer-Verlag, Berlin-Heidelberg-New York, 1974. 
MR 0396267 | 
Zbl 0298.02004[vD] van Douwen E.K.: 
The integers and topology. in: Handbook of Set-theoretic Topology, K. Kunen and J.E. Vaughan, Eds., North-Holland, Amsterdam, 1984, pp.111-167. 
MR 0776619 | 
Zbl 0561.54004[Go] Goldstern M.: 
Tools for your forcing construction. in: Set Theory of the Reals, H. Judah, Ed., Israel Math. Conf. Proceedings 6 (1993), pp.305-360. 
MR 1234283 | 
Zbl 0834.03016[GS] Goldstern M., Shelah S.: 
Many simple cardinal invariants. Arch. Math. Logic 32 (1993), 3 203-221. 
MR 1201650 | 
Zbl 0786.03030[K] Kunen K.: 
Set Theory. Studies on Logic and the Foundations of Mathematics, North-Holland, 1980. 
MR 0597342 | 
Zbl 0960.03033[NR] Newelski L., Roslanowski A.: 
The ideal determined by the unsymmetric game. Proc. Amer. Math. Soc. 117 (1993), 3 823-831. 
MR 1112500 | 
Zbl 0778.03016[R] Roslanowski A.: 
Mycielski ideals generated by uncountable systems. Colloq. Math. 66 (1994), 2 187-200. 
MR 1268063 | 
Zbl 0833.04002