| Title:
             | 
Relative normality and product spaces (English) | 
| Author:
             | 
Hoshina, Takao | 
| Author:
             | 
Sokei, Ryoken | 
| Language:
             | 
English | 
| Journal:
             | 
Commentationes Mathematicae Universitatis Carolinae | 
| ISSN:
             | 
0010-2628 (print) | 
| ISSN:
             | 
1213-7243 (online) | 
| Volume:
             | 
44 | 
| Issue:
             | 
3 | 
| Year:
             | 
2003 | 
| Pages:
             | 
515-524 | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
Arhangel'ski\u{\i} defines in [Topology Appl. 70 (1996), 87--99], as one of various notions on relative topological properties, strong normality of $A$ in $X$ for a subspace $A$ of a topological space $X$, and shows that this is equivalent to normality of $X_A$, where $X_A$ denotes the space obtained from $X$ by making each point of $X \setminus A$ isolated. In this paper we investigate for a space $X$, its subspace $A$ and a space $Y$ the normality of the product $X_A \times Y$ in connection with the normality of $(X\times Y)_{(A\times Y)}$. The cases for paracompactness, more generally, for $\gamma$-paracompactness will also be discussed for $X_A\times Y$. As an application, we prove that for a metric space $X$ with $A \subset X$ and a countably paracompact normal space $Y$, $X_A \times Y$ is normal if and only if $X_A \times Y$ is countably paracompact. (English) | 
| Keyword:
             | 
strongly normal in | 
| Keyword:
             | 
normal | 
| Keyword:
             | 
$\gamma$-paracompact | 
| Keyword:
             | 
product spaces | 
| Keyword:
             | 
\newline weak $C$-embedding | 
| MSC:
             | 
54B05 | 
| MSC:
             | 
54B10 | 
| MSC:
             | 
54C20 | 
| MSC:
             | 
54C45 | 
| MSC:
             | 
54D15 | 
| MSC:
             | 
54D20 | 
| idZBL:
             | 
Zbl 1097.54013 | 
| idMR:
             | 
MR2025817 | 
| . | 
| Date available:
             | 
2009-01-08T19:30:48Z | 
| Last updated:
             | 
2012-04-30 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/119405 | 
| . | 
| Reference:
             | 
[1] Alas O.T.: On a characterization of collectionwise normality.Canad. Math. Bull. 14 (1971), 13-15. Zbl 0209.53901, MR 0296886 | 
| Reference:
             | 
[2] Arhangel'skiĭ A.V.: Relative topological properties and relative topological spaces.Topology Appl. 70 (1996), 87-99. MR 1397067 | 
| Reference:
             | 
[3] Bing R.H.: Metrization of topological spaces.Canad. Math. J. 5 (1951), 175-186. Zbl 0042.41301, MR 0043449 | 
| Reference:
             | 
[4] Burke D.K., Pol R.: Products of Michael spaces and completely metrizable spaces.Proc. Amer. Math. Soc. 129 (2000), 1535-1544. MR 1712941 | 
| Reference:
             | 
[5] Costantini C., Marcone A.: Extensions of functions which preserve the continuity on the original domain.Topology Appl. 103 (2000), 131-153. Zbl 0986.54025, MR 1758790 | 
| Reference:
             | 
[6] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321 | 
| Reference:
             | 
[7] Hoshina T.: Products of normal spaces with Lašnev spaces.Fund. Math. 124 (1984), 143-153. Zbl 0567.54006, MR 0774506 | 
| Reference:
             | 
[8] Hoshina T.: Normality of product spaces.II, in K. Morita and J. Nagata, eds., Topics in General Topology, North-Holland, Amsterdam, 1989, pp.121-160. Zbl 0699.54004, MR 1053195 | 
| Reference:
             | 
[9] Hoshina T., Yamazaki K.: Weak $C$-embedding and $P$-embedding, and product spaces.Topology Appl. 125 (2002), 233-247. Zbl 1013.54006, MR 1933574 | 
| Reference:
             | 
[10] Ishii T.: On product spaces and product mappings.J. Math. Soc. Japan 18 (1966), 166-181. Zbl 0151.29901, MR 0193610 | 
| Reference:
             | 
[11] Kodama Y.: On subset theorems and the dimension of products.Amer. J. Math. 106 (1969), 486-498. Zbl 0183.27702, MR 0243517 | 
| Reference:
             | 
[12] Michael E.: The product of a normal space and a metric space need not be normal.Bull. Amer. Math. Soc. 69 (1963), 375-376. Zbl 0114.38904, MR 0152985 | 
| Reference:
             | 
[13] Morita K.: Products of normal spaces with metric spaces.{rm II}, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 8 (1962), 87-92. Zbl 0121.39402, MR 0166761 | 
| Reference:
             | 
[14] Morita K.: Note on products of normal spaces with metric spaces.unpublished. | 
| Reference:
             | 
[15] Morita K.: On the dimension of the product of topological spaces.Tsukuba J. Math. 1 (1977), 1-6. Zbl 0403.54021, MR 0474230 | 
| Reference:
             | 
[16] Rudin M.E., Starbird M.: Products with a metric factor.General Topology Appl. 5 (1975), 235-348. Zbl 0305.54010, MR 0380709 | 
| Reference:
             | 
[17] Vaughan J.E.: Non-normal products of $ømega_\mu$-metrizable spaces.Proc. Amer. Math. Soc. 51 (1975), 203-208. MR 0370464 | 
| . |