Article
Keywords:
finite dimensional vector space; monotonic norm; absolute norm; inner pro\-duct norm
Summary:
Let $\Bbb K$ be the field of real or complex numbers. In this note we characterize all inner product norms $p_1,\ldots ,p_m$ on $\Bbb K^n$ for which the norm $x\longmapsto \max \{p_1(x),\ldots ,p_m(x)\}$ on $\Bbb K^n$ is monotonic.
References:
                        
[1] Bauer F.L., Stoer J., Witzgall C.: 
Absolute and monotonic norms. Numer. Math. 3 (1961), 257-264. 
MR 0130104 | 
Zbl 0111.01602 
[3] Johnson C.R., Nylen P.: 
Monotonicity properties of norms. Linear Algebra Appl. 148 (1991), 43-58. 
MR 1090752 | 
Zbl 0717.15015 
[4] Lavrič B.: 
Monotonicity and $ ^*$orthant-monotonicity of certain maximum norms. Linear Algebra Appl. 367 (2003), 29-36. 
MR 1976908 | 
Zbl 1038.15017