[1] Diestel J.: 
A survey of results related to Dunford-Pettis property. Contemp. Math., vol 2, Amer. Math. Soc., Providence, R.I., 1980, pp.15-60. 
MR 0621850[2] Diestel J.: 
Sequences and Series in Banach Spaces. Graduate Texts in Math. 92, Springer, New York, 1984. 
MR 0737004[3] Diestel J., Morrison T.J.: 
The Radon-Nikodym Property for the space of operators. Math. Nachr. 92 (1979), 7-12. 
MR 0563569 | 
Zbl 0444.46021[4] Emmanuele G.: 
The (BD) property in $L^1(\mu,E)$. Indiana Univ. Math. J. 36.1 (1987), 229-230. 
MR 0877000[5] Emmanuele G.: 
On the Banach spaces with the Property $(V^*)$ of Pelczynski, II. Ann. Mat. Pura Appl. 160 (1991), 163-170. 
MR 1163206 | 
Zbl 0759.46018[6] Emmanuele G.: 
Some more Banach spaces with the (NRNP). Le Matematiche (Catania) 48 (1993), 213-218. 
MR 1320664 | 
Zbl 0828.46008[7] Emmanuele G., Rao T.S.S.R.K.: 
Spaces of Bochner integrable functions and spaces of representable operators as ${\Cal U}$-ideals. Quart. J. Math. Oxford 48 (1997), 467-478. 
MR 1604823[9] Godefroy G., Saab P.: 
Quelques espaces de Banach ayant les propriétés $(V)$ ou $(V^*)$ de A. Pelcynski. C.R. Acad. Sci. Paris 303 (1986), 503-506. 
MR 0865871 | 
Zbl 0602.46014[10] Gonzalez M., Onieva V.M.: 
Lifting results for sequences in Banach spaces. Math. Proc. Cambridge Phil. Soc. 105 (1989), 117-121. 
MR 0966145 | 
Zbl 0633.46025[11] Grothendieck A.: 
Sur les applications faiblement compactes d'espaces du type $C(K)$. Canad. J. Math. 5 (1953), 129-173. 
MR 0058866[12] Harmand P., Werner D., Werner W.: 
M-ideals in Banach Spaces and Banach Algebras. Lectures Notes in Math. 1547, Springer, Berlin, 1993. 
MR 1238713 | 
Zbl 0789.46011[13] Kalton N.J., Pelczynski A.: 
Kernels of surjections from ${\Cal L}_1$-spaces with an application to Sidon sets. Math. Ann. 309 (1997), 135-158. 
MR 1467651 | 
Zbl 0901.46008[14] Kaufman R., Petrakis M., Riddle L.H., Uhl J.J.: 
Nearly representable operators. Trans. Amer. Math. Soc. 312 (1989), 315-333. 
MR 0951887 | 
Zbl 0673.47016[15] Leung D.H.: 
A Gelfand-Phillips Property with respect to the Weak Topology. Math. Nachr. 149 (1990), 177-181. 
MR 1124803 | 
Zbl 0765.46007[16] Li D.: 
Lifting Properties for Some Quotients of $L^1$-Spaces and Other Spaces $L$-Summand in Their Bidual. Math. Z. 199 (1988), 321-329. 
MR 0961814[17] Lohman R.H.: 
A note on Banach spaces containing $\ell_1$. Canad. Math. Bull. 19 (1976), 365-367. 
MR 0430748 | 
Zbl 0342.46006[18] Megginson R.E.: 
An introduction to Banach Space Theory. Graduate Texts in Mathematics, 183, Springer, New York, 1998. 
MR 1650235 | 
Zbl 0910.46008[19] Morrison T.J.: 
Functional Analysis, An Introduction to Banach Space Theory. Wiley & Sons, New York, 2001. 
MR 1885114 | 
Zbl 1005.46004[20] Pelczynski A.: 
Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Polish Acad. Sci. 10 (1962), 641-648. 
MR 0149295 | 
Zbl 0107.32504[21] Randrianantoanina N.: 
Radon-Nikodym Properties for Spaces of Compact Operators. Rev. Roumanie Math. Pures Appl. 41 (1996), 119-131. 
MR 1404645 | 
Zbl 0858.46018[22] Talagrand M.: 
Weakly Cauchy sequences in $L^1(E)$. Amer. J. Math. 106 (1984), 703-724. 
MR 0745148[23] Talagrand M.: 
Quand l'espace des mesures à variation bornée est-il faiblement séquentiellement complet?. Proc. Amer. Math. Soc. 90 (1984), 285-288. 
MR 0727251 | 
Zbl 0534.46017