[1] Bandelt H.-J.: 
Tolerance relations on lattices. Bull. Austral. Math. Soc. 23 (1981), 367-381. 
MR 0625179 | 
Zbl 0449.06005[3] Chajda I.: 
Algebraic theory of tolerance relations. Univerzita Palackého Olomouc, Olomouc, 1991. 
Zbl 0747.08001[5] Chajda I., Horváth E.K.: 
A triangular scheme for congruence distributivity. Acta Math. Sci. Szeged 68 (2002), 29-35. 
MR 1916565 | 
Zbl 0997.08001[6] Chajda I., Czédli G., Horváth E.K.: 
Trapezoid lemma and congruence distributivity. Math. Slovaca 53 (2003), 247-253. 
MR 2025021 | 
Zbl 1058.08007[7] Chajda I., Radeleczki S.: 
$0$-conditions and tolerance schemes. Acta Math. Univ. Comenianae 72 2 (2003), 177-184. 
MR 2040261 | 
Zbl 1087.08002[8] Czédli G., Horváth E.K.: 
Congruence distributivity and modularity permit tolerances. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 41 (2002), 43-53. 
MR 1967339 | 
Zbl 1043.08002[9] Czédli G., Lenkehegyi A.: 
On classes of ordered algebras and quasiorder distributivity. Acta Sci. Math. 46 (1983), 41-54. 
MR 0739021[10] Czédli G., Horváth E.K., Radeleczki S.: 
On tolerance lattices of algebras in congruence modular varieties. Acta Math. Hungar. 100 (1-2) (2003), 9-17. 
MR 1984855 | 
Zbl 1049.08007[11] Grillet P.A., Varlet J.C.: 
Complementedness conditions in lattices. Bull. Soc. Roy. Sci. Liège 36 (1967), 628-642. 
MR 0228389 | 
Zbl 0157.34202[12] Gumm H.-P.: 
Geometrical methods in congruence modular algebras. Mem. Amer. Math. Soc. 45 286 (1983). 
MR 0714648 | 
Zbl 0547.08006[13] Pinus A.G., Chajda I.: 
Quasiorders on universal algebras. Algebra i Logika 32 3 (1993), 308-325 (in Russian). 
MR 1286557 | 
Zbl 0824.08002[14] Radeleczki S., Schweigert D.: 
Lattices with complemented tolerance lattice. Czechoslovak Math. J. 54 (129) (2004), 2 407-412. 
MR 2059261 | 
Zbl 1080.06006[15] Stern M.: 
Semimodular Lattices, Theory and Applications. Cambridge University Press, Cambridge, New York, Melbourne, 1999. 
MR 1695504[16] Varlet J.C.: 
A generalization of the notion of pseudo-complementedness. Bull. Soc. Roy. Sci. Liège 37 (1968), 149-158. 
MR 0228390 | 
Zbl 0162.03501