| Title: | Diophantine equation $\frac{q^n-1}{q-1}=y$ for four prime divisors of $y-1$ (English) | 
| Author: | Polický, Zdeněk | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 46 | 
| Issue: | 3 | 
| Year: | 2005 | 
| Pages: | 577-588 | 
| . | 
| Category: | math | 
| . | 
| Summary: | In this paper the special diophantine equation $\frac{q^{n}-1}{q-1}=y$ with integer coefficients is discussed and integer solutions are sought. This equation is solved completely just for four prime divisors of $y-1$. (English) | 
| Keyword: | diophantine equation | 
| Keyword: | Fermat and Mersenne primes | 
| Keyword: | Catalan conjecture | 
| MSC: | 11A41 | 
| MSC: | 11D41 | 
| MSC: | 11D45 | 
| MSC: | 11D61 | 
| MSC: | 11D72 | 
| idZBL: | Zbl 1121.11031 | 
| idMR: | MR2174534 | 
| . | 
| Date available: | 2009-05-05T16:53:29Z | 
| Last updated: | 2012-04-30 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/119550 | 
| . | 
| Reference: | [1] Bennett M.: Rational approximation to algebraic number of small height: The diophantine equation $|ax^n-by^n|=1$.J. Reine Angew. Math. 535 (2001), 1-49. Zbl 1009.05033, MR 1837094 | 
| Reference: | [2] Bilu Y.F.: Catalan's Conjecture.Séminaire Bourbaki, 55ème année, 909, 2002. Zbl 1094.11014 | 
| Reference: | [3] Bugeaud Y.: Linear forms in p-adic logarithms and the diophantine equation $(x^n-1)/(x-1)=y^q$.Math. Proc. Cambridge Philos. Soc. 127 (1999), 373-381. MR 1713116 | 
| Reference: | [4] Bugeaud Y., Mignotte M.: On the diophantine equation $(x^n-1)/(x-1)=y^q$ with negative $x$.Proceedings of the Millennial Conference on Number Theory, Urbana-Champaign, IL, USA, 2002, pp.145-151. Zbl 1064.11030, MR 1956223 | 
| Reference: | [5] Bugeaud Y., Mignotte M., Roy Y., Shorey T.N.: On the diophantine equation $(x^n-1)/(x-1)=y^q$.Math. Proc. Cambridge Philos. Soc. 127 (1999), 353-372. MR 1713115 | 
| Reference: | [6] Bugeaud Y., Mignotte M., Roy Y.: On the diophantine equation $(x^n-1)/(x-1)=y^q$.Pacific J. Math. 193 (2000), 257-268. MR 1755817 | 
| Reference: | [7] Crescenzo P.: A diophantine equation arises in the theory of finite groups.Advances in Math. 17 (1975), 25-29. MR 0371812 | 
| Reference: | [8] Dickson L.E.: History of the Theory of Numbers.vol 2, AMS Chelsea, Providence, 1999. Zbl 0958.11500 | 
| Reference: | [9] Khosravi A., Khosravi B.: On the diophantine equation $(q^n-1)/(q-1)=y$.Comment. Math. Univ. Carolinae 44 (2003), 1 1-7. MR 2045841 | 
| Reference: | [10] Křížek M., Luca F., Somer L.: 17 Lectures on Fermat Numbers: From Number Theory to Geometry.Springer, New York, 2001. MR 1866957 | 
| Reference: | [11] Ligh S., Neal L.: A note on Mersenne numbers.Math. Mag. 47 (1974), 231-233. Zbl 0292.10013, MR 0347728 | 
| Reference: | [12] Ljunggren W.: Noen Setninger om ubestemte likninger av formen $(x^n-1)/(x-1)=y^q$.Norsk. Mat. Tidsskr. 25 (1943), 17-20. | 
| Reference: | [13] Nagell T.: Note sur l'equation indéterminée $(x^n-1)/(x-1)=y^q$.Norsk. Mat. Tidsskr. 2 (1920), 75-78. | 
| Reference: | [14] Polický Z.: Exercises of division theory leading to brand new results.Proceedings of the International Conference The Mathematics Education into the 21st Century Project; Brno, Czech Republic, 2003, pp.231-234. | 
| Reference: | [15] Ribenboim P.: The New Book of Prime Number Records.Springer, New York, 1996. Zbl 0856.11001, MR 1377060 | 
| Reference: | [16] Saradha N., Shorey T.N.: The equation $(x^n-1)/(x-1)=y^q$ with $x$ square.Math. Proc. Cambridge Philos. Soc. 125 (1999), 1-19. MR 1645497 | 
| Reference: | [17] Shorey T.N.: Exponential diophantine equation involving product of consecutive integers and related equations.Bambah, R.P. et al., Number theory; Birkhäuser, Trends in Mathematics, Basel, 2000, pp.463-495. MR 1764814 | 
| . |