Article
Keywords:
$I$-density point; family of topologies
Summary:
We investigate a family of topologies introduced similarly as the $I$-density topology. In particular, we compare these topologies with respect to inclusion and we look for conditions under which these topologies are identical.
References:
                        
[FFH] Filipczak M., Filipczak T., Hejduk J.: 
On the comparison of the density type topologies. Atti Sem. Mat. Fis. Univ. Modena, to appear. 
MR 2151082 | 
Zbl 1117.54002[FH] Filipczak M., Hejduk J.: 
On topologies associated with the Lebesgue measure. Tatra Mountains, Mathematical Publications 28 (2004), 187-197. 
MR 2086991 | 
Zbl 1107.54003[HH] Hejduk J., Horbaczewska G.: On $I$-density topologies with respect to a fixed sequence. Reports on Real Analysis, Conference at Rowy 2003, pp.78-85.
[H] Horbaczewska G.: 
On $I$-density topologies with respect to a fixed sequence - further properties. Tatra Mountains, Mathematical Publications, to appear. 
MR 2287251 | 
Zbl 1135.54002[Ł] Łazarow E.: 
On the Baire class of $I$-approximate derivatives. Proc. Amer. Math. Soc. 100 4 (1987), 669-674. 
MR 0894436[PWW1] Poreda W., Wagner-Bojakowska E., Wilczyński W.: 
A category analogue of the density topology. Fund. Math. 125 (1985), 167-173. 
MR 0813753[PWW2] Poreda W., Wagner-Bojakowska E., Wilczyński W.: 
Remarks on $I$-density and $I$-approximately continuous functions. Comment. Math. Univ. Carolinae 26 3 (1985), 241-265. 
MR 0817826