Article
Keywords:
$\sigma $-finite measure space; measure preserving transformation; conservative; ergodic; supremum of ergodic ratios; maximal and reverse maximal inequalities
Summary:
Using the ratio ergodic theorem for a measure preserving transformation in a $\sigma $-finite measure space we give a straightforward proof of Derriennic's reverse maximal inequality for the supremum of ergodic ratios.
References:
                        
[1] Derriennic Y.: 
On the integrability of the supremum of ergodic ratios. Ann. Probability 1 (1973), 338-340. 
MR 0352404 | 
Zbl 0263.28015[2] Ephremidze L.: 
On the distribution function of the majorant of ergodic means. Studia Math. 103 (1992), 1-15. 
MR 1184098[3] Ephremidze L.: 
A new proof of the ergodic maximal equality. Real Anal. Exchange 29 (2003/04), 409-411. 
MR 2063082[5] Ornstein D.: 
A remark on the Birkhoff ergodic theorem. Illinois J. Math. 15 (1971), 77-79. 
MR 0274719 | 
Zbl 0212.40102[6] Sato R.: 
Maximal functions for a semiflow in an infinite measure space. Pacific J. Math. 100 (1982), 437-443. 
MR 0669336 | 
Zbl 0519.28010