[1] Auslender A.: 
Stability in mathematical programming with nondifferentiable data. SIAM J. Control Optim. 22 (1984), 239-254. 
MR 0732426 | 
Zbl 0538.49020[2] Bazaraa M.S., Sherali H.D., Shetty C.M.: 
Nonlinear Programming: Theory and Algorithms. John Wiley and Sons, New York, 1991. 
MR 2218478 | 
Zbl 1140.90040[3] Ben-Israel A., Mond B.: 
What is invexity?. J. Austral. Math. Soc. Ser. B 28 (1986), 1-9. 
MR 0846778 | 
Zbl 0603.90119[5] Craven B.D.: 
Nonsmooth multiobjective programming. Numer. Funct. Anal. Optim. 10 1-2 (1989), 49-64. 
MR 0978802 | 
Zbl 0645.90076[6] Cromme L.: 
Strong uniqueness: a far-reaching criterion for the convergence of iterative procedures. Numer. Math. 29 (1978), 179-193. 
MR 0461890[7] Egudo R.R., Mond B.: 
Duality with generalized convexity. J. Austral. Math. Soc. Ser. B 28 (1986), 10-21. 
MR 0846779 | 
Zbl 0608.49012[8] Hiriart-Urruty J.-B.: 
Refinements of necessary optimality conditions in nondifferentiable programming I. Appl. Math. Optim. 5 (1979), 63-82. 
MR 0526428 | 
Zbl 0389.90088[9] Hanson M.A.: 
On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80 (1981), 545-550. 
MR 0614849 | 
Zbl 0463.90080[10] Hanson M.A., Mond B.: 
Further generalizations of convexity in mathematical programming. J. Inform. Optim. Sci. 3 (1982), 25-32. 
MR 0713163 | 
Zbl 0475.90069[11] Jeyakumar V.: 
Strong and weak invexity in mathematical programming. Math. Oper. Res. 55 (1985), 109-125. 
MR 0811672 | 
Zbl 0566.90086[12] Jeyakumar V.: 
Equivalence of a saddle-points and optima, and duality for a class of non-smooth non-convex problems. J. Math. Anal. Appl. 130 (1988), 334-343. 
MR 0929939[13] Kaul R.N., Suneja S.K., Lalitha C.S.: 
Generalized nonsmooth invexity. J. Inform. Optim. Sci. 15 (1994), 1-17. 
MR 1262012 | 
Zbl 0852.90113[14] Klatte D.: 
Stable local minimizers in semi-infinite optimization: regularity and second-order conditions. J. Comput. Appl. Math. 56 (1994), 137-157. 
MR 1338641 | 
Zbl 0823.90121[16] Mond B., Weir T.: 
Generalized concavity and duality. in: Generalized Concavity in Optimization and Economics, edited by S. Schaible and W.T. Ziemba, Academic Press, New York, 1981, pp.263-279. 
MR 0652702 | 
Zbl 0619.90062[17] Preda V.: 
On efficiency and duality for multiobjective programs. J. Math. Anal. Appl. 166 (1992), 365-377. 
MR 1160932 | 
Zbl 0764.90074[18] Singer I.: 
Abstract Convex Analysis, John Wiley and Sons, New York, 1997.  
MR 1461544[19] Studniarski M.: 
Necessary and sufficient conditions for isolated local minima of nonsmooth functions. SIAM J. Control Optim. 24 (1986), 1044-1049. 
MR 0854069 | 
Zbl 0604.49017[20] Studniarski M.: 
Sufficient conditions for the stability of local minimum points in nonsmooth optimization. Optimization 20 (1989), 27-35. 
MR 0977217 | 
Zbl 0679.90072[21] Studniarski M.: 
Characterizations of strict local minima for some nonlinear programming problems. Nonlinear Anal. 30 (1997), 5363-5367 (Proc. 2nd World Congress of Nonlinear Analysts). 
MR 1726039 | 
Zbl 0914.90243[22] Ward D.E.: 
Characterizations of strict local minima and necessary conditions for weak sharp minima. J. Optim. Theory Appl. 80 (1994), 551-571. 
MR 1265176 | 
Zbl 0797.90101[23] Wolfe P.: 
A duality theorem for nonlinear programming. Quart. Appl. Math. 19 (1961), 239-244. 
MR 0135625