[2] Caradus S.R., Pfaffenberger W.E., Yood B.: 
Calkin Algebras and Algebras of Operators on Banach Spaces. Marcel Dekker, New York, 1974. 
MR 0415345 | 
Zbl 0299.46062[3] Cuthbert J.R.: 
On semigroups such that $U(t)-I$ is compact for some $t>0$. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 18 (1971), 9-16. 
MR 0279625[4] Engel K.J., Nagel R.: 
One-Parameter Semigroups for Linear Evolution Equations. Springer, New York, 2000. 
MR 1721989 | 
Zbl 0952.47036[5] Gohberg I.C., Markus A., Feldman I.A.: Normally solvable operators and ideals associated with them. Amer. Math. Soc. Trans. Ser. 2 61 (1967), 63-84.
[6] Gramsch B., Lay D.: 
Spectral mapping theorems for essential spectra. Math. Ann. 192 (1971), 17-32. 
MR 0291846 | 
Zbl 0203.45601[7] Henriquez H.: 
Cosine operator families such that $C(t)-I$ is compact for all $t>0$. Indian J. Pure Appl. Math. 16 (1985), 143-152. 
MR 0780302 | 
Zbl 0572.47031[8] Istratescu V.I.: 
Some remarks on a class of semigroups of operators. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 26 (1973), 241-243. 
MR 0333824[9] Kato T.: 
Perturbation theory for nullity, deficiency and other quantities of linear operators. J. Anal. Math. 6 (1958), 261-322. 
MR 0107819 | 
Zbl 0090.09003[10] Latrach K., Dehici A.: 
Remarks on embeddable semigroups in groups and a generalization of some Cuthbert's results. Int. J. Math. Math. Sci. (2003), 22 1421-1431. 
MR 1980178 | 
Zbl 1069.47051[11] Latrach K., Paoli J.M.: 
Polynomially compact-like strongly continuous semigroups. Acta Appl. Math. 82 (2004), 87-99. 
MR 2061478 | 
Zbl 1066.47039[12] Lizama C.: 
Uniform continuity and compactness for resolvent families of operators. Acta Appl. Math. 38 (1995), 131-138. 
MR 1326629 | 
Zbl 0842.45009[13] Lutz D.: 
Compactness properties of operator cosine functions. C.R. Math. Rep. Acad. Sci. Canada 2 (1980), 277-280. 
MR 0600561 | 
Zbl 0448.47021[14] Phillips R.S.: 
Spectral theory for semigroups of linear operators. Trans. Amer. Math. Soc. 71 (1951), 393-415. 
MR 0044737[15] Schechter M.: 
On the essential spectrum of an arbitrary operator I. J. Math. Anal. Appl. 13 (1966), 205-215. 
MR 0188798 | 
Zbl 0147.12101[16] Schechter M.: 
Principles of Functional Analysis. Graduate Studies in Mathematics, Vol. 36, American Mathematical Society, Providence, 2001. 
MR 1861991 | 
Zbl 1002.46002[17] West T.T.: 
Riesz operators in Banach spaces. Proc. London Math. Soc. 16 (1966), 131-140. 
MR 0193522 | 
Zbl 0139.08401