| Title: | Network character and tightness of the compact-open topology (English) | 
| Author: | Ball, Richard N. | 
| Author: | Hager, Anthony W. | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 47 | 
| Issue: | 3 | 
| Year: | 2006 | 
| Pages: | 473-482 | 
| . | 
| Category: | math | 
| . | 
| Summary: | For Tychonof\text{}f $X$ and $\alpha$ an infinite cardinal, let $\alpha \operatorname{def} X := $ the minimum number of $\alpha $\,cozero-sets of the Čech-Stone compactification which intersect to $X$ (generalizing $\Bbb R$-defect), and let $\operatorname{rt} X := \min _\alpha \max (\alpha , \alpha \operatorname{def} X)$. Give $C(X)$ the compact-open topology. It is shown that $\tau C(X)\leq n\chi C(X) \leq \operatorname{rt}X=\max (L(X),L(X) \operatorname{def} X)$, where: $\tau$ is tightness; $n\chi$ is the network character; $L(X)$ is the Lindel"{o}f number. For example, it follows that, for $X$ Čech-complete, $\tau C(X)=L(X)$. The (apparently new) cardinal functions $n\chi C$ and $\operatorname{rt}$ are compared with several others. (English) | 
| Keyword: | compact-open topology | 
| Keyword: | network character | 
| Keyword: | tightness | 
| Keyword: | defect | 
| Keyword: | Lindelöf number | 
| MSC: | 22A99 | 
| MSC: | 46E10 | 
| MSC: | 54A25 | 
| MSC: | 54C35 | 
| MSC: | 54D20 | 
| MSC: | 54H11 | 
| idZBL: | Zbl 1150.54016 | 
| idMR: | MR2281009 | 
| . | 
| Date available: | 2009-05-05T16:58:49Z | 
| Last updated: | 2012-04-30 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/119608 | 
| . | 
| Reference: | [BH] Ball R., Hager A.: Epi-topology and epi-convergence in archimedean lattice-ordered groups with unit.submitted. | 
| Reference: | [CB] Comfort W., Balaglou G.: Compact-covering numbers.Fund. Math. 131 (1988), 69-82. MR 0970915 | 
| Reference: | [CN] Comfort W., Negrepontis S.: Continuous pseudometrics.Lecture Notes in Pure and Appl. Math. 14, Dekker, New York, 1975. Zbl 0306.54004, MR 0410618 | 
| Reference: | [CT] Comfort W., Retta T.: Generalized perfect maps and a theorem of I. Juhász.Lecture Notes in Pure and Appl. Math. 95, Dekker, New York, 1985, pp.79-102. Zbl 0564.54012, MR 0789263 | 
| Reference: | [E] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321 | 
| Reference: | [GJ] Gillman L., Jerison M.: Rings of Continuous Functions.Van Nostrand, Princeton, 1960. Zbl 0327.46040, MR 0116199 | 
| Reference: | [H] Hušek M.: The class of $k$-compact spaces is simple.Math. Z. 110 (1969), 123-126. MR 0244947 | 
| Reference: | [Mc] McCoy R.: Function spaces which are $k$-spaces.Topology Proc. 5 (1980), 139-154. MR 0624467 | 
| Reference: | [McN] McCoy R., Ntantu I.: Topological Properties of Spaces of Continuous Functions.Lecture Notes in Mathematics 1315, Springer, Berlin, 1988. Zbl 0647.54001, MR 0953314 | 
| Reference: | [M1] Mrowka S.: On $E$-compact spaces. II.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 597-605. Zbl 0161.19603, MR 0206896 | 
| Reference: | [M2] Mrowka S.: $\Cal R$-compact spaces with weight $X< {Exp}_{\Cal R}X$.Proc. Amer. Math. Soc. 128 (2000), 3701-3709. MR 1690997 | 
| . |