Article
Keywords:
weak (continuous) selection; weak orderability; Vietoris topology; dense countable subset; isolated point; countable base; collectionwise Hausdorff space
Summary:
We show that if a Hausdorff topological space $X$ satisfies one of the following properties: \noindent a) $X$ has a countable, discrete dense subset and $X^2$ is hereditarily collectionwise Hausdorff; \noindent b) $X$ has a discrete dense subset and admits a countable base; \noindent then the existence of a (continuous) weak selection on $X$ implies weak orderability. As a special case of either item a) or b), we obtain the result for every separable metrizable space with a discrete dense subset.
References:
                        
[1] Artico G., Marconi U., Pelant J., Rotter L., Tkachenko M.: 
Selections and suborderability. Fund. Math. 175 1-33 (2002). 
MR 1971236 | 
Zbl 1019.54014[2] Engelking R.: 
General Topology. Heldermann Verlag, Berlin, revised and completed edition, 1989. 
MR 1039321 | 
Zbl 0684.54001[3] García-Ferreira S., Gutev V., Nogura T., Sanchis M., Tomita A.: 
Extreme selections for hyperspaces of topological spaces. Topology Appl. 122 157-181 (2002). 
MR 1919299 | 
Zbl 1034.54007[4] García-Ferreira S., Sanchis M.: 
Weak selections and pseudocompactness. Proc. Amer. Math. Soc. 132 1823-1825 (2004). 
MR 2051146 | 
Zbl 1048.54012[5] Gutev V., Nogura T.: 
A topology generated by selections. Topology Appl. 153 (2005), 900-911. 
MR 2203899 | 
Zbl 1089.54005[7] van Mill J., Wattel E.: 
Selections and orderability. Proc. Amer. Math. Soc. 83 601-605 (1981). 
MR 0627702 | 
Zbl 0473.54010