Article
Keywords:
Borel-Cantelli Lemma; Stirling numbers
Summary:
We present some extensions of the Borel-Cantelli Lemma in terms of moments. Our result can be viewed as a new improvement to the Borel-Cantelli Lemma. Our proofs are based on the expansion of moments of some partial sums by using Stirling numbers. We also give a comment concerning the results of Petrov V.V., {\it A generalization of the Borel-Cantelli Lemma\/}, Statist. Probab. Lett. {\bf 67} (2004), no. 3, 233--239.
References:
                        
[1] Chung K.L., Erdös P.: 
On the application of the Borel-Cantelli Lemma. Trans. Amer. Math. Soc. 72 (1952), 1 179-186. 
MR 0045327[2] Erdös P., Rényi A.: 
On Cantor's series with convergent $\Sigma 1/q_n$. Ann. Univ. Sci. Budapest Sect. Math. 2 (1959), 93-109. 
MR 0126414[3] Kochen S.P., Stone C.J.: 
A note on the Borel-Cantelli Lemma. Illinois J. Math. 8 (1964), 248-251. 
MR 0161355 | 
Zbl 0139.35401[5] Ortega J., Wschebor M.: 
On the sequence of partial maxima of some random sequences. Stochastic Process. Appl. 16 (1983), 85-98. 
MR 0723645[6] Petrov V.V.: 
A note on the Borel-Cantelli Lemma. Statist. Probab. Lett. 58 (2002), 3 283-286. 
MR 1921874 | 
Zbl 1017.60004[7] Petrov V.V.: 
A generalization of the Borel-Cantelli Lemma. Statist. Probab. Lett. 67 (2004), 3 233-239. 
MR 2053525 | 
Zbl 1101.60300[8] Rényi A.: 
Probability Theory. North-Holland Series in Applied Mathematics and Mechanics, vol. 10, North-Holland, Amsterdam-London, 1970; German version 1962, French version 1966, new Hungarian edition 1965. 
MR 0315747[9] Spitzer F.: 
Principles of Random Walk. 2nd edition, Springer, New York-Heidelberg, 1976. 
MR 0388547 | 
Zbl 0979.60002[10] Van Lint J.H., Wilson R.M.: 
A Course in Combinatorics. 2nd ed., Cambridge University Press, Cambridge, 2001. 
MR 1871828 | 
Zbl 0980.05001