[1] Cassels J.W.S.: 
Local Fields. London Mathematical Society, Student Texts 3, Cambridge Univ. Press, London, 1986. 
MR 0861410 | 
Zbl 0595.12006[2] Basu S., Diagana T., Ramaroson F.: 
A $p$-adic version of Hilbert-Schmidt operators and applications. J. Anal. Appl. 2 (2004), 3 173-188. 
MR 2092641 | 
Zbl 1077.47061[3] de Bivar-Weinholtz A., Lapidus M.L.: 
Product formula for resolvents of normal operator and the modified Feynman integral. Proc. Amer. Math. Soc. 110 (1990), 2 449-460. 
MR 1013964[4] Diagana T.: 
Towards a theory of some unbounded linear operators on $p$-adic Hilbert spaces and applications. Ann. Math. Blaise Pascal 12 (2005), 1 205-222. 
MR 2126449 | 
Zbl 1087.47061[5] Diagana T.: 
Erratum to: ``Towards a theory of some unbounded linear operators on $p$-adic Hilbert spaces and applications". Ann. Math. Blaise Pascal 13 (2006), 105-106. 
MR 2233015[6] Diagana T.: Bilinear forms on non-Archimedean Hilbert spaces. preprint, 2005.
[7] Diagana T.: 
Fractional powers of the algebraic sum of normal operators. Proc. Amer. Math. Soc. 134 (2006), 6 1777-1782. 
MR 2207493 | 
Zbl 1092.47027[9] Diarra B.: Geometry of the $p$-adic Hilbert spaces. preprint, 1999.
[10] Johnson G.W., Lapidus M.L.: 
The Feynman Integral and Feynman Operational Calculus. Oxford Univ. Press, Oxford, 2000. 
MR 1771173[12] Ochsenius H., Schikhof W.H.: 
Banach spaces over fields with an infinite rank valuation. $p$-adic Functional Analysis (Poznan, 1998), Marcel Dekker, New York, 1999, pp.233-293. 
MR 1703500 | 
Zbl 0938.46056