Article
Keywords:
strongly bounded groups; existentially closed groups
Summary:
Let $G$ be a non-trivial algebraically closed group and $X$ be a subset of $G$ generating $G$ in infinitely many steps. We give a construction of a binary tree associated with $(G,X)$. Using this we show that if $G$ is $\omega_1$-existentially closed then it is strongly bounded.
References:
                        
[1] Bergman G.: 
Generating infinite symmetric groups. Bull. London Math. Soc. 38 (2006), 429-440. 
MR 2239037 | 
Zbl 1103.20003[2] de Cornulier Y.: 
Strongly bounded groups and infinite powers of finite groups. Comm. Algebra 34 (2006), 2337-2345. 
MR 2240370 | 
Zbl 1125.20023[3] de la Harpe P., Valette A.: 
La propriété (T) de Kazhdan pour les groupes localement compacts. Astérisque 175, SMF, 1989. 
Zbl 0759.22001[5] Hodges W., Hodkinson I., Lascar D., Shelah S.: 
The small index property for $ømega$-stable $ømega$-categorical structures and for the random graph. J. London Math. Soc. (2) 48 (1993), 204-218. 
MR 1231710 | 
Zbl 0788.03039[7] Kechris A., Rosendal Ch.: 
Turbulence, amalgamation and generic automorphisms of homogeneous structures. to appear in Proc. London Math. Soc. (arXiv:math.LO/0409567 v3 18 Oct 2004). 
MR 2308230 | 
Zbl 1118.03042[8] Macintyre A.: 
Model completeness. in: Handbook of Mathematical Logic (edited by Jon Barwise), North-Holland, Amsterdam, 1977, pp.139-180. 
MR 0457132 | 
Zbl 0317.02065[10] Ziegler M.: 
Algebraisch abgeschlossene Gruppen. in: World Problems II (edited by S. Adian et al.), North-Holland, 1980, pp.449-576. 
MR 0579957 | 
Zbl 0451.20001