Article
Keywords:
loop; group; connected transversals
Summary:
Loop capable groups are groups which are isomorphic to inner mapping groups of loops. In this paper we show that abelian groups $C_p^{k}\times C_p\times C_p$, where $k\geq 2$ and $p$ is an odd prime, are not loop capable groups. We also discuss generalizations of this result.
References:
                        
[1] Bruck R.H.: 
Contributions to the theory of loops. Trans. Amer. Math. Soc. 60 (1946), 245-354. 
MR 0017288 | 
Zbl 0061.02201[2] Csörgö P.: 
On connected transversals to abelian subgroups and loop theoretical consequences. Arch. Math. 86 (2006), 499-516. 
MR 2241599 | 
Zbl 1113.20055[4] Kepka T.: 
On the abelian inner permutation groups of loops. Comm. Algebra 26 (1998), 857-861. 
MR 1606178 | 
Zbl 0913.20043[5] Kepka T., Niemenmaa M.: 
On multiplication groups of loops. J. Algebra 135 (1990), 112-122. 
MR 1076080 | 
Zbl 0706.20046[6] Kepka T., Niemenmaa M.: 
On loops with cyclic inner mapping groups. Arch. Math. 60 (1993), 233-236. 
MR 1201636[7] Niemenmaa M.: 
On the structure of the inner mapping groups of loops. Comm. Algebra 24 (1996), 135-142. 
MR 1370527 | 
Zbl 0853.20049[8] Niemenmaa M.: 
On finite loops whose inner mapping groups are abelian. Bull. Austral. Math. Soc. 65 (2002), 477-484. 
MR 1910500 | 
Zbl 1012.20068[9] Niemenmaa M.: 
On finite loops whose inner mapping groups are abelian II. Bull. Austral. Math. Soc. 71 (2005), 487-492. 
MR 2150938 | 
Zbl 1080.20061[10] Niemenmaa M., Kepka T.: 
On connected transversals to abelian subgroups. Bull. Austral. Math. Soc. 49 (1994), 121-128. 
MR 1262682 | 
Zbl 0799.20020