[1] Amir D., Lindenstrauss J.: 
The structure of weakly compact sets in Banach spaces. Ann. of Math. 88 (1968), 35-46. 
MR 0228983 | 
Zbl 0164.14903[2] Benyamini Y., Rudin M.E., Wage M.: 
Continuous images of weakly compact subsets of Banach spaces. Pacific J. Math. 70.2 (1977), 309-324. 
MR 0625889 | 
Zbl 0374.46011[3] Benyamini Y., Starbird T.: 
Embedding weakly compact sets into Hilbert space. Israel J. Math. 23 (1976), 137-141. 
MR 0397372 | 
Zbl 0325.46023[5] Gruenhage G.: 
Covering properties on $X^{2}\backslash \Delta $, $W$-sets, and compact subsets of $\Sigma $-products. Topology Appl. 17 (1984), 287-304. 
MR 0752278 | 
Zbl 0547.54016[6] Ismail M., Szymanski A.: 
On locally compact Hausdorff spaces with finite metrizability number. Topology Appl. 114.3 (2001), 285-293. 
MR 1838327 | 
Zbl 1012.54002[7] Juhász I.: 
Cardinal Functions in Topology - Ten Years After. Mathematical Centre Tracts 123, Amsterdam, 1983. 
MR 0576927[8] Lindenstrauss J.: 
Weakly compact sets, their topological properties and the Banach spaces they generate. Annals of Math. Studies 69, Princeton University Press, Princeton, 1972, pp.235-273. 
MR 0417761 | 
Zbl 0232.46019[9] Michael E., Rudin M.E.: 
A note on Eberlein compacts. Pacific J. Math. 72.2 (1977), 487-495. 
MR 0478092 | 
Zbl 0345.54020[10] Michael E., Rudin M.E.: 
Another note on Eberlein compacts. Pacific J. Math. 72.2 (1977), 497-499. 
MR 0478093 | 
Zbl 0344.54018[11] Rosenthal H.P.: 
The heredity problem for weakly compactly generated Banach spaces. Compositio Math. 28 (1974), 83-111. 
MR 0417762 | 
Zbl 0298.46013[12] Yakovlev N.N.: 
On bicompacta in $\Sigma $-products and related spaces. Comment. Math. Univ. Carolin. 21.2 (1980), 263-283. 
MR 0580682 | 
Zbl 0436.54019