[1] Alama S., Del Pino M.: 
Solutions of elliptic equation with indefinite nonlinearities via Morse theory and linking. Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 95-115. 
MR 1373473[2] Alama S., Tarantello G.: 
On semilinear elliptic equations with indefinite nonlinearities. Calc. Var. Partial Differential Equations 1 (1993), 469-475. 
MR 1383913 | 
Zbl 0809.35022[3] Amann H.: 
Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18 (1976), 620-709. 
MR 0415432 | 
Zbl 0345.47044[4] Ambrosetti A., Brezis H., Cerami G.: 
Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122 (1994), 519-543. 
MR 1276168 | 
Zbl 0805.35028[5] Ambrosetti A., Azorero J.G., Peral I.: 
Multiplicity results for some nonlinear elliptic equations. J. Funct. Anal. 137 (1996), 214-242. 
MR 1383017 | 
Zbl 0852.35045[6] Ambrosetti A., Azorero J.G., Peral I.: 
Existence and multiplicity results for some nonlinear elliptic equations. a survey, SISSA preprint 4/2000/M. 
MR 1801341 | 
Zbl 1011.35049[7] Arcoya D., Boccardo L.: 
Some remarks on critical point theory for nondifferentiable functionals. Nonlinear Differential Equations Appl. 6 (1999), 79-100. 
MR 1674782 | 
Zbl 0923.35049[8] Arcoya D., Carmona J., Pellacci B.: Bifurcation for some quasi-linear operators. SISSA preprint, 1999.
[9] Artola M., Boccardo L.: 
Positive solutions for some quasi-linear elliptic equations. Comm. Appl. Nonlinear Anal. 3 4 (1996), 89-98. 
MR 1420287[10] Chang K.C.: 
Infinite dimensional Morse theory and multiple solution problems. Birkhäuser, Boston, 1993. 
MR 1196690 | 
Zbl 0779.58005[11] Chang K.C.: 
$H^1$ versus $C^1$ isolated critical points. C.R. Acad. Sci. Paris, Sér. I Math. 319 441-446 (1994). 
MR 1296769[12] Dancer E.N., and Du Yihong: 
A note on multiple solutions for some semilinear elliptic problems. J. Math. Anal. Appl. 211 (1997), 626-640. 
MR 1458519[13] de Figueiredo D.G.: 
Positive solutions of semilinear elliptic problems. in Variational Methods in Analysis and Mathematical Physics, ICTP Trieste autumn course, 1981. 
Zbl 0506.35038[14] Mawhin J., Willem M.: 
Critical point theory and Hamiltonian Systems. Springer, New York, 1989. 
MR 0982267 | 
Zbl 0676.58017[15] Li. S., Wang Z.Q.: 
Mountain-pass theorem in order intervals and multiple solutions for semilinear elliptic Dirichlet's problems. J. Anal. Math. 81 (2000), 373-395. 
MR 1785289[16] Li S., Zhang Z.: 
Sign-changing solutions ad multiple solution theorems for semilinear elliptic boundary value problems with jumping nonlinearities. Acta Math. Sinica 16 1 (2000), 113-122. 
MR 1760528[17] Struwe M.: 
Variational Methods: Applications to Nonlinear Partial Differential Equation and Hamiltonian Systems. Springer, Berlin, 1990. 
MR 1078018