[AP] Arkhangelskii A.V., Ponomarev V.I.: 
Fundamentals of General Topology. Reidel Publishing, Boston, 1983. 
MR 0785749[CH] Comfort W., Hager A.: 
The projection mapping and other continuous functions on a product space. Math. Scand. (1971), 28 3 77-90. 
MR 0315657 | 
Zbl 0217.47904[DHH] Dashiell F., Hager A., Henriksen M.: 
Order-Cauchy completions of rings and vector lattices of continuous functions. Canad. J. Math. (1980), 32 3 657-685. 
MR 0586984 | 
Zbl 0462.54009[GH] Gillman L., Henriksen M.: 
Rings of continuous functions in which every finitely generated ideal is principal. Trans. Amer. Math. Soc. (1956), 82 2 366-391. 
MR 0078980 | 
Zbl 0073.09201[GJ] Gillman L., Jerison M.: 
Rings of Continuous Functions. D. Van Nostrand Publishing, New York, 1960. 
MR 0116199 | 
Zbl 0327.46040[HLMW] Henriksen M., Larson S., Martinez J., Woods R.G.: 
Lattice-ordered algebras that are subdirect products of valuation domains. Trans. Amer. Math. Soc. (1994), 345 193-221. 
MR 1239640 | 
Zbl 0817.06014[HVW] Henriksen M., Vermeer H., Woods R.G.: 
Quasi F-covers of Tychonoff spaces. Trans. Amer. Math. Soc. (1987), 303 2 779-803. 
MR 0902798 | 
Zbl 0653.54025[HW] Henriksen M., Woods R.G.: 
Cozero complemented spaces; When the space of minimal prime ideals of a $C(X)$ is compact. Topology Appl. (2004), 141 147-170. 
MR 2058685 | 
Zbl 1067.54015[HW1] Henriksen M., Wilson R.: 
When is $C(X)/P$ a valuation ring for every prime ideal $P$?. Topology Appl. (1992), 44 175-180. 
MR 1173255 | 
Zbl 0801.54014[HW2] Henriksen M., Wilson R.: 
Almost discrete SV-spaces. Topology Appl. (1992), 46 89-97. 
MR 1184107[L2] Larson S.: 
$f$-Rings in which every maximal ideal contains finitely many minimal prime ideals. Comm. Algebra (1997), 25 12 3859-3888. 
MR 1481572 | 
Zbl 0952.06026[L3] Larson S.: 
Constructing rings of continuous functions in which there are many maximal ideals with nontrivial rank. Comm. Algebra (2003), 31 5 2183-2206. 
MR 1976272 | 
Zbl 1024.54015[L4] Larson S.: 
Rings of continuous functions on spaces of finite rank and the SV property. Comm. Algebra, to appear. 
MR 2345805 | 
Zbl 1146.54008[MW] Martinez J, Woodward S.: 
Bezout and Prüfer $f$-rings. Comm. Algebra (1992), 20 2975-2989. 
MR 1179272 | 
Zbl 0766.06018