[1] Abramovich Y.A., Aliprantis C.D.: 
An Invitation to Operator Theory. Graduate Studies in Mathematics, 50, American Mathematical Society, Providence, 2002. 
MR 1921782 | 
Zbl 1022.47001[2] Abramovich Y.A., Aliprantis C.D.: 
Problems in Operators Theory. Graduate Studies in Mathematics, 51, American Mathematical Society, Providence, 2002. 
MR 1921783[3] Abramovich Y.A., Kitover A.K.: 
Inverses of disjointness preserving operators. Memoirs Amer. Math. Soc. 143 (2000), 679. 
MR 1639940 | 
Zbl 0974.47032[5] Arendt W.: 
Spectral properties of Lamperti operators. Indiana Univ. Math. J. 32 (1983), 199-215. 
MR 0690185 | 
Zbl 0488.47016[6] Ben Amor F., Boulabiar K.: 
On the modulus of disjointness preserving operators on complex vector lattices. Algebra Universalis 54 (2005), 185-193. 
MR 2217635 | 
Zbl 1107.47026[7] Ben Amor F., Boulabiar K.: 
Maximal ideals of disjointness preserving operators. J. Math. Anal. Appl. 322 (2006), 599-609. 
MR 2250601[8] Bernau S.: 
Orthomorphisms of Archimedean vector lattices. Math. Proc. Cambridge Philos. Soc. 89 (1981), 119-128. 
MR 0591978 | 
Zbl 0463.46002[9] Bigard A., Keimel K., Wolfenstein S.: 
Groupes et anneaux réticulés. Lectures Notes in Mathematics, 608, Springer, Berlin-Heidelberg-New York, 1977. 
MR 0552653 | 
Zbl 0384.06022[10] Bigard A., Keimel K.: 
Sur les endomorphismes conservants les polaires d'un groupe réticulé Archimédien. Bull. Soc. Math. France 97 (1969), 381-398. 
MR 0262137[11] Conrad P.F., Diem J.E.: 
The Ring of polar preserving endomorphisms of an abelian lattice-ordered group. Illinois J. Math. 15 (1971), 222-240. 
MR 0285462 | 
Zbl 0213.04002[12] Gillman L., Jerison M.: 
Rings of Continuous Functions. Springer, Berlin-Heidelberg-New York, 1976. 
MR 0407579 | 
Zbl 0327.46040[13] Huijsmans C.B., Luxemburg W.A.J.: 
An alternative proof of a Radon-Nikodým theorem for lattice homomorphisms. Acta. Appl. Math. 27 (1992), 67-71. 
MR 1184878 | 
Zbl 0807.47023[14] Huijsmans C.B., de Pagter B.: 
Disjointness preserving and diffuse operators. Compositio Math. 79 (1991), 351-374. 
MR 1121143 | 
Zbl 0757.47023[15] Luxemburg W.A.J.: 
Some aspects of the theory of Riesz spaces. Lecture Notes in Mathematics, 4, University of Arkansas, Fayetteville, 1979. 
MR 0568706 | 
Zbl 0431.46003[16] Luxemburg W.A.J., Schep A.R.: 
A Radon-Nikodým type theorem for positive operators and a dual. Nederl. Akad. Wetensch. Indag. Math. 40 (1978), 357-375. 
MR 0507829 | 
Zbl 0389.47018[17] Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces I. North-Holland, Amsterdam, 1971.
[18] Meyer M.: 
Le stabilateur d'un espace vectoriel réticulé. C.R. Acad. Sci. Paris, Serie I 283 (1976), 249-250. 
MR 0433191[20] de Pagter B.: $f$-algebras and orthomorphisms. Thesis, Leiden, 1981.
[21] de Pagter B.: 
A note on disjointness preserving operators. Proc. Amer. Math. Soc. 90 (1984), 543-549. 
MR 0733403 | 
Zbl 0541.47032[22] de Pagter B., Schep A.R.: 
Band decomposition for disjointness preserving operators. Positivity 4 (2000), 259-288. 
MR 1797129 | 
Zbl 0991.47022[23] van Putten B.: Disjunctive linear operators and partial multiplication in Riesz spaces. Thesis, Wageningen, 1980.
[24] Wójtowicz M.: 
On a weak Freudenthal spectral theorem. Comment. Math. Univ. Carolin. 33 (1992), 631-643. 
MR 1240185[26] Zaanen A.C.: 
Introduction to Operator Theory in Riesz Spaces. Springer, Berlin-Heidelberg-New York, 1997. 
MR 1631533 | 
Zbl 0878.47022