Previous |  Up |  Next

Article

Title: Interior regularity of weak solutions to the equations of a stationary motion of a non-Newtonian fluid with shear-dependent viscosity. The case $q=\frac{3d}{d+2}$ (English)
Author: Wolf, Jörg
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 4
Year: 2007
Pages: 659-668
.
Category: math
.
Summary: In this paper we consider weak solutions ${\bold u}: \Omega \rightarrow \Bbb R^d$ to the equations of stationary motion of a fluid with shear dependent viscosity in a bounded domain $\Omega \subset \Bbb R^d$ ($d=2$ or $d=3$). For the critical case $q=\frac{3d}{d+2}$ we prove the higher integrability of $\nabla {\bold u}$ which forms the basis for applying the method of differences in order to get fractional differentiability of $\nabla {\bold u}$. From this we show the existence of second order weak derivatives of $u$. (English)
Keyword: non-Newtonian fluids
Keyword: weak solutions
Keyword: interior regularity
MSC: 35B65
MSC: 35D10
MSC: 35D30
MSC: 35Q30
MSC: 35Q35
MSC: 76A05
idZBL: Zbl 1199.35297
idMR: MR2375166
.
Date available: 2009-05-05T17:05:28Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119688
.
Reference: [1] Adams R.A.: Sobolev Spaces.Academic Press, Boston, 1978. Zbl 1098.46001
Reference: [2] Astarita G., Marrucci G.: Principles of Non-Newtonian Fluid Mechanics.McGraw-Hill, London, New York, 1974.
Reference: [3] Batchelor G.K.: An Introduction to Fluid Mechanics.Cambridge Univ. Press, Cambridge, 1967.
Reference: [4] Bird R.B., Armstrong R.C., Hassager O.: Dynamics of Polymer Liquids. Vol. 1: Fluid Mechanics.$2^{an{nd}}$ ed., J. Wiley & Sons, New York, 1987.
Reference: [5] Frehse J., Málek J., Steinhauer M.: An existence result for fluids with shear dependent viscosity-steady flows.Nonlinear Anal. 30 5 (1997), 3041-3049; [Proc. 2nd World Congress Nonlin. Analysts]. MR 1602949
Reference: [6] Frehse J., Málek J., Steinhauer M.: On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method.SIAM J. Math. Anal. 34 5 (2004), 1064-1083. MR 2001659
Reference: [7] Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I: Linearized Steady Problems.Springer, New York, 1994. MR 1284205
Reference: [8] Giaquinta M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems.Annals Math. Studies, no. 105, Princeton Univ. Press, Princeton, N.J., 1983. Zbl 0516.49003, MR 0717034
Reference: [9] Giaquinta M., Modica G.: Almost-everywhere regularity results for solutions of nonlinear elliptic systems.Manuscripta Math. 28 (1979), 109-158. Zbl 0411.35018, MR 0535699
Reference: [10] Lamb H.: Hydrodynamics.$6^{an{th}}$ ed., Cambridge Univ. Press, Cambridge, 1945. Zbl 0828.01012
Reference: [11] Naumann J., Wolf J.: Interior differentiability of weak solutions to the equations of stationary motion of a class of non-Newtonian fluids.J. Math. Fluid Mech. 7 2 (2005), 298-313. Zbl 1070.35023, MR 2177130
Reference: [12] Růžička M.: A note on steady flow of fluids with shear dependent viscosity.Nonlinear Anal. 30 5 (1997), 3029-3039; [Proc. 2nd World Congress Nonlin. Analysts]. MR 1602945
Reference: [13] Wilkinson W.L.: Non-Newtonian Fluids. Fluid Mechanics, Mixing and Heat Transfer.Pergamon Press, London, New York, 1960. Zbl 0124.41802, MR 0110392
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-4_9.pdf 235.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo