Previous |  Up |  Next

Article

Keywords:
stable forms; automorphism groups
Summary:
In this note we give a direct method to classify all stable forms on $\Bbb R^n$ as well as to determine their automorphism groups. We show that in dimensions 6, 7, 8 stable forms coincide with non-degenerate forms. We present necessary conditions and sufficient conditions for a manifold to admit a stable form. We also discuss rich properties of the geometry of such manifolds.
References:
[1] Borel A., Chandra H.: Arithmetic subgroups of algebraic groups. Ann. of Math. 75 (1962), 485-535. DOI 10.2307/1970210 | MR 0147566 | Zbl 0107.14804
[2] Bureš J., Vanžura J.: Multisymplectic forms of degree three in dimension seven. Rend. Circ. Mat. Palermo (2) Suppl. no. 71 (2003), 73-91. MR 1982435 | Zbl 1045.53017
[3] Bryant R.: Metrics with exceptional holonomy. Ann. of Math. (2) 126 (1987), 525-576. MR 0916718 | Zbl 0637.53042
[4] Bryant R.: Conformal geometry and $3$-plane fields on $6$-manifolds. arXiv:math.DG/0511110. MR 0974338
[5] Čadek M., Crabb M., Vanžura J.: Obstruction theory on $8$-manifolds. preprint 2007.
[6] Djokovic D.Z.: Classification of trivectors of an eight-dimensional real vector space. Linear and Multilinear Algebra 13 (1983), 3-39. DOI 10.1080/03081088308817501 | MR 0691457 | Zbl 0515.15011
[7] Dupont J.: $K$-theory obstructions to the existence of vector fields. Acta Math. 133 (1974), 67-80. DOI 10.1007/BF02392142 | MR 0425980 | Zbl 0313.57012
[8] Gauntlett J.P., Martelli D., Pakis S., Waldram D.: $G$-structures and wrapped NS5-branes. Comm. Math. Phys. 247 (2004), 421-445, hep-th/0205050. DOI 10.1007/s00220-004-1066-y | MR 2063267
[9] Gray A.: Vector cross products on manifolds. Trans. Amer. Math. Soc. 141 (1969), 465-504; (Errata in Trans. Amer. Math. Soc. 148 (1970), 625). DOI 10.1090/S0002-9947-1969-0243469-5 | MR 0243469 | Zbl 0182.24603
[10] Hitchin N.: The geometry of three-forms in six dimensions. J. Differential Geom. 55 (2000), 547-576. MR 1863733 | Zbl 1036.53042
[11] Hitchin N.: Stable forms and special metrics. Contemp. Math. 288 (2001), 70-89. DOI 10.1090/conm/288/04818 | MR 1871001 | Zbl 1004.53034
[12] Joyce D.: Compact Manifolds with Special Holonomy. Oxford University Press, Oxford, 2000. MR 1787733 | Zbl 1027.53052
[13] Sato M., Kimura T.: A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J. 65 (1977), 1-155. MR 0430336
[14] Le H.V.: The existence of symplectic $3$-forms on $7$-manifolds. arXiv:math.DG/0603182.
[15] Le H.V.: Manifolds admitting a $\tilde G_2$-structure. arXiv:07040503.
[16] Murakami S.: On the automorphism of a real semi-simple Lie algebra. J. Math. Soc. Japan 4 (1952), 103-133. DOI 10.2969/jmsj/00420103 | MR 0051829
[17] Sagle A.: Malcev algebras. Trans. Amer. Math. Soc. 101 (1961), 426-458. DOI 10.1090/S0002-9947-1961-0143791-X | MR 0143791 | Zbl 0101.02302
[18] Thomas E.: Fields of tangent $k$-planes on manifolds. Invent. Math. 3 (1967), 334-347. DOI 10.1007/BF01402957 | MR 0217814 | Zbl 0162.55402
[19] Thomas E.: Vector fields on low dimensional manifolds. Math. Z. 103 (1967), 85-93. DOI 10.1007/BF01110620 | MR 0224109
[20] Tsimpis D.: M-theory on eight-manifolds revisited: $N=1$ supersymmetry and generalized Spin $(7)$-structures. preprint MPP-2005-129. MR 2219075
[21] Witt F.: Special metric structures and closed forms. Oxford Ph.D. Thesis, arXiv:math.DG/0502443.
[22] Yamaguchi K.: Differential systems associated with simple graded Lie algebras. Adv. Stud. Pure Math. 22 (1993), 413-494. MR 1274961 | Zbl 0812.17018
Partner of
EuDML logo