Article
Keywords:
quasigroup; ternary quasigroup; $n$-quasigroup; heterogeneous algebra; hyperidentity; modular group; conjugate; parastrophe; time reversal
Summary:
For a positive integer $n$, the usual definitions of $n$-quasigroups are rather complicated: either by combinatorial conditions that effectively amount to Latin $n$-cubes, or by $2n$ identities on $n+1$ different $n$-ary operations. In this paper, a more symmetrical approach to the specification of $n$-quasigroups is considered. In particular, ternary quasigroups arise from actions of the modular group.
References:
                        
[1] Chein O. et al.: 
Quasigroups and Loops: Theory and Applications. Heldermann, Berlin, 1990. 
MR 1125806 | 
Zbl 0719.20036[2] Coxeter H.S.M., Moser W.O.J.: 
Generators and Relations for Discrete Groups. Springer, Berlin, 1957. 
MR 0088489 | 
Zbl 0487.20023[7] Sade A.: 
Quasigroupes obéissant à certaines lois. Rev. Fac. Sci. Univ. Istanbul, Ser. A 22 (1957), 151-184. 
MR 0106253