[1] Ahmad, B.: 
A quasilinearization method for a class of integro-differential equations with mixed nonlinearities. Nonlinear Anal. Real World Appl. 7 (2006), 997–1004. 
MR 2260894 | 
Zbl 1111.45005[2] Ahmad, B., Alsaedi, A.: 
Existence of approximate solutions of the forced Duffing equation with discontinuous type integral boundary conditions. Nonlinear Anal. Real World Appl. 10 (2009), 358–367. 
MR 2451715 | 
Zbl 1154.34314[3] Ahmad, B., Alsaedi, A., Alghamdi, B.: 
Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions. Nonlinear Anal. Real World Appl. 9 (2008), 1727–1740. 
MR 2422576 | 
Zbl 1154.34311[5] Ahmad, B., Nieto, J. J.: 
The monotone iterative technique for three-point second-order integrodifferential boundary value problems with p-Laplacian. Boundary Value Problems 2007 (2007), 9pp., Article ID 57481, doi: 10.1155/2007/57481. 
MR 2320689 | 
Zbl 1149.65098[6] Ahmad, B., Nieto, J. J.: 
Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions. Nonlinear Anal. 69 (2008), 3291–3298. 
MR 2450538 | 
Zbl 1158.34049[7] Ahmad, B., Nieto, J. J., Shahzad, N.: 
The Bellman-Kalaba-Lakshmikantham quasilinearization method for Neumann problems. J. Math. Anal. Appl. 257 (2001), 356–363. 
DOI 10.1006/jmaa.2000.7352 | 
MR 1827327[9] Bellman, R., Kalaba, R.: 
Quasilinearization and Nonlinear Boundary Value Problems. Amer. Elsevier, New York, 1965. 
MR 0178571 | 
Zbl 0139.10702[10] Bouziani, A., Benouar, N. E.: 
Mixed problem with integral conditions for a third order parabolic equation. Kobe J. Math. 15 (1998), 47–58. 
MR 1654526 | 
Zbl 0921.35068[12] Cannon, J. R.: 
Encyclopedia of Math. and its Appl. ch. The one-dimensional heat equation, Addison-Wesley, Mento Park, CA, 1984. 
MR 0747979[13] Cannon, J. R., Esteva, S. Perez, Hoek, J. Van Der: 
A Galerkin procedure for the diffusion equation subject to the specification of mass. SIAM. J. Numer. Anal. 24 (1987), 499–515. 
DOI 10.1137/0724036 | 
MR 0888747[17] Formaggia, L., Nobile, F., Quarteroni, A., Veneziani, A.: 
Multiscale modelling of the circulatory system: a preliminary analysis. Comput. Vis. Sci. 2 (1999), 75–83. 
DOI 10.1007/s007910050030 | 
Zbl 1067.76624[18] Ionkin, N. I.: 
Solution of a boundary value problem in heat condition with a nonclassical boundary condition. Differ. Uravn. 13 (1977), 294–304. 
MR 0603291[19] Kartynnik, A. V.: 
Three-point boundary value problem with an integral space-variable condition for a second-order parabolic equation. Differential Equations 26 (1990), 1160–1166. 
MR 1080432 | 
Zbl 0729.35053[20] Ladde, G. S., Lakshmikantham, V., Vatsala, A. S.: 
Monotone Iterative Techniques for Nonlinear Differential Equations. Pitman, Boston, 1985. 
MR 0855240 | 
Zbl 0658.35003[21] Lakshmikantham, V., Nieto, J. J.: 
Generalized quasilinearization for nonlinear first order ordinary differential equations. Nonlinear Times & Digest 2 (1995), 1–10. 
MR 1333329 | 
Zbl 0855.34013[22] Lakshmikantham, V., Vatsala, A. S.: 
Mathematics and its Applications, 440. ch. Generalized Quasilinearization for Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1998. 
MR 1640601[24] Shi, P.: 
Weak solution to evolution problem with a nonlocal constraint. SIAM J. Math. Anal. 24 (1993), 46–58. 
DOI 10.1137/0524004 | 
MR 1199526[25] Vatsala, A. S., Yang, J.: 
Monotone iterative technique for semilinear elliptic systems. Boundary Value Probl. 2 (2005), 93–106. 
MR 2198745 | 
Zbl 1143.65388[26] Yurchuk, N. I.: 
Mixed problem with an integral condition for certain parabolic equations. Differential Equations 22 (1986), 1457–1463. 
MR 0880769 | 
Zbl 0654.35041