Previous |  Up |  Next


Title: Connections between ideals of non-commutative generalizations of $MV$-algebras and ideals of their underlying lattices (English)
Author: Rachůnek, Jiří
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 40
Issue: 1
Year: 2001
Pages: 195-200
Category: math
MSC: 03G20
MSC: 06B10
MSC: 06D35
MSC: 06F15
idZBL: Zbl 1040.06005
idMR: MR1904695
Date available: 2009-01-29T16:01:42Z
Last updated: 2012-05-03
Stable URL:
Reference: [1] Darnel M. R.: Theory of Lattice-Ordered Groups.Marcel Dekker, Inc., New York-Basel-Hong Kong, 1995. Zbl 0810.06016, MR 1304052
Reference: [2] Chang C. C.: Algebraic analysis of many valued logic.Trans. Amer. Math. Soc. 88, 467-490. MR 0094302
Reference: [3] Cignoli R. L. O., D’Ottaviano I. M. L., Mundici D.: Algebraic Foundations of Many-valued Reasoning.Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. Zbl 0937.06009, MR 1786097
Reference: [4] Dvurečenskij A.: Pseudo MV-algebras are intervals in l-groups.J. Austral. Math. Soc. (Ser. A) (to appear). MR 1902211
Reference: [5] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures.Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. MR 1861369
Reference: [6] Georgescu G., Iorgulescu A.: Pseudo-MV algebras: A non-commutative extension of MV-algebras.In.: Proc. Fourth Inter. Symp. Econ. Inform., May 6-9, 1999, INFOREC Printing House, Bucharest, 1999, 961-968.
Reference: [7] Georgescu G., Iorgulescu A.: Pseudo-MV algebras.Multiple Valued Logic 6 (2001), 95-135. Zbl 1014.06008, MR 1817439
Reference: [8] Rachůnek J.: A non-commutative generalization of MV-algebras.Czechoslovak Math. J. (to appear). Zbl 1012.06012, MR 1905434
Reference: [9] Rachůnek J.: Prime spectra of non-commutative generalizations of MV-algebras.(submitted). Zbl 1058.06015


Files Size Format View
ActaOlom_40-2001-1_18.pdf 723.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo