[Cai] T. Cai: 
On the diophantine equation $xy+yz+zx = m$. Publ. Math. Debrecen 45 (1994), 131-132. 
MR 1291808 | 
Zbl 0864.11015[Cox] D. Cox: 
Primes of the form $x^2 + ny^2$. John Wiley & Sons (1989). 
MR 1028322[Hal] N. A. Hall: 
Binary quadratic discriminants with a single class of forms in each gennus. Math. Zeit. 44 (1938), 85-90. 
DOI 10.1007/BF01210641[HBP] Al-Zaid Hassan B. Brindza, Á. Pintér: 
On positive integer solutions of the equation $xy + yz + xz = n$. Canad. Math. Bull. 39 (1996), 199-202. 
DOI 10.4153/CMB-1996-024-5 | 
MR 1390355[Kov] K. Kovács: 
About some positive solutions of the diophantine equation $\sum_{1\leq i. Publ Math. Debrecen 40 (1992), 207-210. MR 1181363[Lou] S. Louboutin: 
Minorations (sous ľhypothèse de Riemann généralisée) des nombres de classes des corps quadratiques imaginaires. Application, C. R. Acad. Sci. Paris 310 (1990), 795-800. 
MR 1058499[Mor] L. J. Mordell: 
Diophantine equations. Chapter 30, Section 2 : The equation xy + yz + zx = d, Academic Press (1969). 
MR 0249355 | 
Zbl 0188.34503