[1] M. Al-Baali R. Fletcher: Variational methods for nonlinear least squares. J. Optim. Theory Appl. 36 (1985), 405-421.
[2] R. H. Byrd R. B. Schnabel G. A. Shultz: 
Approximate solution of the trust region problem by minimization over two-dimensional subspaces. Math. Programming 40 (1988), 247-263. 
MR 0941311 
[3] J. E. Dennis: Some computational techniques for the nonlinear least squares problem. In: Numerical solution of nonlinear algebraic equations (G. D. Byrne, C. A. Hall, eds.), Academic Press, London 1974.
[4] J. E. Dennis H. H. W. Mei: An Unconstrained  Optimization Algorithm which Uses Function and Gradient Values. Research Report No. TR-75-246, Department of Computer Science, Cornell University 1975.
[5] J. E. Dennis D. M. Gay R. E. Welsch: An adaptive nonlinear least-squares algorithm. ACM Trans. Math. Software 7 (1981), 348-368.
[6] J. E. Dennis R. B. Schnabel: 
Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, New Jersey 1983. 
MR 0702023 
[7] R. Fletcher: A Modified Marquardt Subroutine for Nonlinear Least Squares. Research Report No.R-6799, Theoretical Physics Division, A.E.R.E. Harwell 1971.
[9] R. Fletcher C. Xu: 
Hybrid methods for nonlinear least squares. IMA J. Numer. Anal. 7 (1987), 371-389. 
MR 0968531 | 
Zbl 0648.65051 
[10] P. E. Gill W. Murray: 
Newton type methods for unconstrained and linearly constrained optimization. Math. Programming 7 (1974), 311-350. 
MR 0356503 
[11] G. H. Golub C. F. Van Loan: 
Matrix Computations. Johns Hopkins University Press, Baltimore 1989. 
MR 1002570 
[12] M. R. Hestenes: 
Conjugate Direction Methods in Optimization. Springer-Verlag, Berlin 1980. 
MR 0561510 | 
Zbl 0439.49001 
[13] K. Levenberg: 
A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math. 2 (1944), 164-168. 
MR 0010666 
[14] L. Lukšan: 
Inexact trust region method for large sparse nonlinear least squares. Kybernetika 29 (1993), 305-324. 
MR 1247880 
[15] L. Lukšan: 
Hybrid methods for large sparse nonlinear least squares. J. Optim. Theory Appl. 89 (1996), to appear. 
MR 1393364 
[16] D. W. Marquardt: 
An algorithm for least squares estimation of non-linear parameters. SIAM J. Appl. Math. 11 (1963), 431-441. 
MR 0153071 
[17] J. J. Moré B. S. Garbow K. E. Hillström: 
Testing unconstrained optimization software. ACM Trans. Math. Software 7 (1981), 17-41. 
MR 0607350 
[18] J. J. Moré D. C. Sorensen: 
Computing a trust region step. SIAM J. Sci. Statist. Comput. 4 (1983), 553-572. 
MR 0723110 
[19] M. J. D. Powell: 
A new algorithm for unconstrained optimization. In: Nonlinear Programming (J. B. Rosen, O. L. Mangasarian, K. Ritter, eds.), Academic Press, London 1970. 
MR 0272162 | 
Zbl 0228.90043 
[20] M. J. D. Powell: 
On the global convergence of trust region algorithms for unconstrained minimization. Math. Programming 29 (1984), 297-303. 
MR 0753758 | 
Zbl 0569.90069 
[21] G. A. Shultz R. B. Schnabel R. H. Byrd: 
A family of trust-region-based algorithms for unconstrained minimization with strong global convergence properties. SIAM J. Numer. Anal. 22 (1985), 47-67. 
MR 0772882 
[22] T. Steihaug: 
The conjugate gradient method and trust regions in large-scale optimization. SIAM J. Numer. Anal. 20 (1983), 626-637. 
MR 0701102 | 
Zbl 0518.65042