[2] D. L. Duttweiler T. Kailath: 
RKHS Approach to Detection and Estimation Problems - Part IV. Non Gaussian Detection. IEEE Trans. Inf. Th., IT-19 (1973), 19-28. 
MR 0406673[3] T. Kailath D. Duttweiler: 
An RKHS Approach to Detection and Estimation Problems - Part III. Generalized Innovations Representations and a Likelihood-Ratio Formula. IEEE Trans. Inf. Th., IT-18 (1972), 6, 730-745. 
MR 0406672[4] L. Duttweiler T. Kailath: 
RKHS Approach to Detection and Estimation Problems - Part V. Parameter Estimation. IEEE Trans. Inf. IT-19, (1973), 1, 29-37. 
MR 0406674[5] P. R. Halmos: Introduction to Hilbert space. Chelsea Publishing Company, New-York 1972.
[6] И. A. Ибрагимов Ю. A. Poзанов: 
Гауссовские случайные процессы. Hayкa, Mocквa 1970. 
Zbl 0221.10016[7] G. Kallianpur: 
The Role of RKHS in the Study of Gaussian Processes. In Advances in Probability, vol. 2, M. Dekker INC. New York 1970, 59-83. 
MR 0283866[8] E. Parzen: Statistical Inference on Time Series by Hilbert Space Methods. Technical report No 23, Stanford 1959. (Reprinted in the book E. Parzen: Time Series Analysis  Papers. Holden-Day, San Francisco 1967.)
[9] E. Parzen: 
Statistical Inference on Time Series by RKHS Methods II. Proc. 12th Biennial Canadian Math. Congress, R. Pyke (Ed.), Providence, R. I.: Amer. Math. Soc. 1969, 1 - 37. 
MR 0275616[10] A. Pázman: 
Plans d'expérience pour les estimations de fonctionnelles non-linéaires. Annales de l'Institut H. Poincaré 13 (1977), No 3. 
MR 0455230