[1] M. Avriel, A. C. Williams: 
Complementary geometric programming. SIAM J. Appl. Math. /P (1970), 125-141. 
MR 0267901 | 
Zbl 0319.90035[2] M. Avriel, A. C. Williams: An extension of geometric programming with applications in engineering optimization. J. Engng. Math. 5 (1971), 187-194.
[3] P. P. Bansal, S. E. Jacobsen: 
Characterization of local solution for a class of nonconvex programs. J.   Optim.  Theory Appl.  15  (1975),   127-131. 
MR 0401151[4] R. J. Hillestad: 
Optimization problems subject to a budged constraint with economies of scale. Oper. Res. 23 (1975), 1091-1098. 
MR 0434447[5] R. J. Hillestad, S. E. Jacobsen: 
Linear programs with an additional reverse convex constraint. Appl. Math. Optim. 6 (1980), 257-269. 
MR 0576263 | 
Zbl 0435.90065[6] R. J. Hillestad, S. E. Jacobsen: 
Reverse convex programming. Appl. Math. Optim. 6 (1980) 63-78. 
MR 0557055 | 
Zbl 0448.90044[7] R. Meyer: 
The validity of a family of optimization methods. SIAM J. Control 8 (1970), 41-54. 
MR 0312915 | 
Zbl 0194.20501[8] J. B. Rosen: 
Iterative solution of nonlinear optimal control problems. SIAM J. Control 4 (1766), 223-244. 
MR 0189877 | 
Zbl 0229.49025[9] N. V. Thoai, H. Tuy: 
Convergent algorithms for minimizing a concave function. Math. Oper. Res. 4 (1980), 556-565. 
MR 0593646 | 
Zbl 0472.90054[10] H. Tuy: 
Concave programming under linear constraints. Dokl. Akad. Nauk SSSR 159 (1964), 32-35. 
MR 0181465[11] H. Tuy: 
Conical algorithm for solving a class of complementarity problems. Preprint series 18 (1981), Hanoi. 
MR 0683317 | 
Zbl 0618.90090[12] U. Ueing: 
A combinatorical method to compute a global solution of certain nonconvex optimization problems. In: Numerical Methods for Non-Linear Optimization (F. A. Lootsma ed.), pp. 223-230, Academic Press, New York 1972. 
MR 0429118