| Title:
|
A note on integration of rational functions (English) |
| Author:
|
Mařík, Jan |
| Language:
|
English |
| Journal:
|
Mathematica Bohemica |
| ISSN:
|
0862-7959 (print) |
| ISSN:
|
2464-7136 (online) |
| Volume:
|
116 |
| Issue:
|
4 |
| Year:
|
1991 |
| Pages:
|
405-411 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
Let $P$ and $Q$ be polynomials in one variable with complex coefficients and let $n$ be a natural number. Suppose that $Q$ is not constant and has only simple roots. Then there is a rational function $\varphi$ with $\varphi '=P/Q^{n+1}$ if and only if the Wronskian of the functions $Q',(Q^2)',\ldots,(Q^n)',P$ is divisible by $Q$. (English) |
| Keyword:
|
integration |
| Keyword:
|
primitive |
| Keyword:
|
rational function |
| Keyword:
|
Wronskian |
| MSC:
|
26C15 |
| idZBL:
|
Zbl 0739.26012 |
| idMR:
|
MR1146400 |
| DOI:
|
10.21136/MB.1991.126024 |
| . |
| Date available:
|
2009-09-24T20:48:08Z |
| Last updated:
|
2020-07-29 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/126024 |
| . |
| Reference:
|
[1] G. H. Hardy: The integration of functions of a single variable.Second edition, Cambridge, 1928. |
| . |