| Title: | A method for determining constants in the linear combination of exponentials (English) | 
| Author: | Cerha, J. | 
| Language: | English | 
| Journal: | Mathematica Bohemica | 
| ISSN: | 0862-7959 (print) | 
| ISSN: | 2464-7136 (online) | 
| Volume: | 121 | 
| Issue: | 2 | 
| Year: | 1996 | 
| Pages: | 121-122 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Shifting a numerically given function $b_1 \exp a_1t + \dots+ b_n \exp a_n t$ we obtain a fundamental matrix of the linear differential system $\dot{y} =Ay$ with a constant matrix $A$. Using the fundamental matrix we calculate $A$, calculating the eigenvalues of $A$ we obtain $a_1, \dots, a_n$ and using the least square method we determine $b_1, \dots, b_n$. (English) | 
| Keyword: | fundamental matrix | 
| Keyword: | eigenvalues | 
| Keyword: | linear system of ordinary differential equations | 
| Keyword: | linear differential system | 
| Keyword: | shifted exponentials | 
| Keyword: | the least square method | 
| MSC: | 34A30 | 
| MSC: | 65D15 | 
| MSC: | 65D20 | 
| MSC: | 65F15 | 
| MSC: | 65L99 | 
| idZBL: | Zbl 0863.65003 | 
| idMR: | MR1400603 | 
| DOI: | 10.21136/MB.1996.126106 | 
| . | 
| Date available: | 2009-09-24T21:17:05Z | 
| Last updated: | 2020-07-29 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/126106 | 
| . | 
| Reference: | [1] P. Hartman: Ordinary differential equations.John Wiley & Sons, New York, London, Sydney, 1964. Zbl 0125.32102, MR 0171038 | 
| . |