Full entry |
PDF
(0.3 MB)
Feedback

closure system; algebraic structure; $\SS$-closed subset; $\SS$-hamiltonian and $\SS$-regular algebraic structure; $\SS$-transferable congruence

References:

[1] Chajda I., Emanovský P.: **$\Sigma$-isomorphic algebraic structures**. Math. Bohem. 120 (1995), 71-81. MR 1336947 | Zbl 0833.08001

[2] Chajda I., Emanovský P.: **Modularity and distributivity of the lattice of $\Sigma$-closed subsets of an algebraic structure**. Math. Bohem. 120 (1995), 209-217. MR 1357603

[3] Chajda I.: **Characterization of Hamiltonian algebras**. Czechoslovak Math. J. 42(117) (1992), 487-489. MR 1179311

[4] Chajda I.: **Transferable principal congruences and regular algebras**. Math. Slovaca 34 (1984), 97-102. MR 0735940 | Zbl 0601.08004

[5] Chajda I.: **Algebras whose principal congruences form a sublattices of the congruence lattice**. Czechoslovak Math. J. 38 (113) (1988), 585-588. MR 0962902

[6] Grätzer G.: **Universal Algebra**. (2nd edition). Springer Verlag, 1979. MR 0538623

[7] Kiss E. W.: **Each Hamiltonian variety has the congruence extension property**. Algebra Universalis 12 (1981), 395-398. DOI 10.1007/BF02483899 | MR 0624304 | Zbl 0422.08003

[8] Klukovits L.: **Hamiltonian varieties of universal algebras**. Acta Sci. Math. (Szeged) 37 (1975), 11-15. MR 0401611 | Zbl 0285.08004

[9] Malcev A.I.: **Algebraic Systems**. Nauka, Moskva, 1970. (In Russian.) MR 0282908

[10] Mamedov O.M.: **Characterization of varieties with n-transferable principal congruences**. VINITI Akad. Nauk Azerbaid. SR, Inst. Matem. i Mech. (Baku), 1989, pp. 2-12. (In Russian.)