Previous |  Up |  Next

Article

Keywords:
Peano derivatives; Denjoy index
Summary:
Let $H\subset [0,1]$ be a closed set, $k$ a positive integer and $f$ a function defined on $H$ so that the $k$-th Peano derivative relative to $H$ exists. The major result of this paper is that if $H$ has finite Denjoy index, then $f$ has an extension, $F$, to $[0,1]$ which is $k$ times Peano differentiable on $[0,1]$ with $f_i=F_i$ on $H$ for $i=1,2,\ldots,k$.
References:
[1] Z. Buczolich: Second Peano derivatives are not extendable. Real Analysis Exch 14 (1988-89), 423-428. DOI 10.2307/44151957 | MR 0995982
[2] P. Bullen: Denjoy's index and porosity. Real Analysis Exch, 10 (1984-84), 85-144. DOI 10.2307/44151693 | MR 0795610
[3] A. Denjoy: Sur l'integration des coefficients differentiels d'order supérieur. Fundamenta Mathematicae 25 (1935), 273-326. DOI 10.4064/fm-25-1-273-326
[4] M. J. Evans C. E. Weil: Peano derivatives: A survey. Real Analysis Exch, 7(1981-82), 5-24. MR 0646631
[5] H. Fejzić: Decomposition of Peano derivatives. Proc. Amer. Soc 119 (1993), no. 2, 599-609. DOI 10.1090/S0002-9939-1993-1155596-8 | MR 1155596
[6] H. Fejzić: The Peano derivatives. Doct. Dissertation. Michigan State University, 1992.
[7] H. Fejzić: On generalized Peano and Peano derivatives. Fundamenta Mathematicae 143 (1994), 55-74. DOI 10.4064/fm-143-1-55-74 | MR 1234991
[8] V. Jarník: Sur l'extension du domaine de definition des fonctions d'une variable, qui laisse intacte la derivabilite de la fonction. Bull international de l'Acad Sci de Boheme (1923).
[9] J. Mařík: Derivatives and closed sets. Acta Math. Hung. 43 (1-2) (1984), 25-29. MR 0731958
[10] G. Petruska, M. Laczkovich: Baire 1 functions, approximately continuous functions and derivatives. Acta Math Acad Sci Hungar, 25 (1974), 189-212. DOI 10.1007/BF01901760 | MR 0379766 | Zbl 0279.26003
[11] C. E. Weil: The Peano derivative: What's known and what isn't. Real Analysis Exchange 9 (1983-1984), 354-365. DOI 10.2307/44153545 | MR 0766061
Partner of
EuDML logo