[1] M. G. Crandall P. H. Rabinowitz: 
Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch. Rat. Mech. Anal. 52 (1973), 161-180. 
DOI 10.1007/BF00282325 | 
MR 0341212[2] M. G. Crandall P. H. Rabinowitz: 
The Hopf bifurcation theorem in infinite dimensions. Aгch. Rat. Mech. Anal. 67 (1977), 53-72. 
DOI 10.1007/BF00280827 | 
MR 0467844[4] G. Da Prato A. Lunardi: 
Hopf bifurcation for nonlinear integrodifferential equations in Banach spaces with infinite delay. Indiana Univ. Math. Ј., Vol. 36, No 2 (1987). 
MR 0891773[5] J. K. Hale: 
Theory of functional differential equations. Springer-Verlag, New York 1977. 
MR 0508721 | 
Zbl 0352.34001[б] D. Henry: 
Geometric theory of semilinear parabolic equations. Springer-Verlag Berlin-Heidelbeгg-New York 1981. 
MR 0610244 | 
Zbl 0456.35001[7] H. C. Simpson: 
Stability of periodic solutions of nonlinear integrodifferential systems. SIAM Ј. Appl. Math. 38 (1980), З41-З6З. 
MR 0579423 | 
Zbl 0457.45005[9] O. J. Staffans: 
Hopf bifurcation for an infinite delay functional equations. NATO ASI Series. Vol F 37, Springer-Verlag Berlin-Heidelberg 1987. 
MR 0921919[11] A. Tesei: 
Stability properties for partial Volterra integrodifferential equations. Аnn. Mat. Puгa Аppl. 126 (1980), 103-115. 
MR 0612355 | 
Zbl 0463.45009[12] A. Torchinski: 
Real-variable methods in harmonic analysis. Аcademic Press INC, 1986. 
MR 0869816[13] Y. Yamada Y. Niikura: 
Bifurcation of periodic solutions for nonlinear parabolic equations with infinite delays. Funkc. Ekvac. 29 (1986), 309- ЗЗЗ. 
MR 0904545[14] K. Yoshida: 
The Hopf bifurcation and its stability for semilinear diffusion equation with time delay arising in ecology. Hiгoshima Math. Ј. 12 (1982), 321-348. 
DOI 10.32917/hmj/1206133754 | 
MR 0665499[15] K. Yoshida, K Kishimoto: 
Effect of two time delays on partially functional differential equations. Kumamoto Ј. Sci. (Math.) 15 (1983), 91-109. 
MR 0705720 | 
Zbl 0572.35086