| Title:
             | 
Two classes of graphs related to extremal eccentricities (English) | 
| Author:
             | 
Gliviak, Ferdinand | 
| Language:
             | 
English | 
| Journal:
             | 
Mathematica Bohemica | 
| ISSN:
             | 
0862-7959 (print) | 
| ISSN:
             | 
2464-7136 (online) | 
| Volume:
             | 
122 | 
| Issue:
             | 
3 | 
| Year:
             | 
1997 | 
| Pages:
             | 
231-241 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
A graph $G$ is called an $S$-graph if its periphery $\mathop Peri(G)$ is equal to its center eccentric vertices $\mathop Cep(G)$. Further, a graph $G$ is called a $D$-graph if $\mathop Peri(G)\cap\mathop Cep(G)=\emptyset$.
We describe $S$-graphs and $D$-graphs for small radius. Then, for a given graph $H$ and natural numbers $r\ge2$, $n\ge2$, we construct an $S$-graph of radius $r$ having $n$ central vertices and containing $H$ as an induced subgraph. We prove an analogous existence theorem for $D$-graphs, too. At the end, we give some properties of $S$-graphs and $D$-graphs. (English) | 
| Keyword:
             | 
eccentricity | 
| Keyword:
             | 
central vertex | 
| Keyword:
             | 
peripheral vertex | 
| MSC:
             | 
05C12 | 
| MSC:
             | 
05C35 | 
| idZBL:
             | 
Zbl 0898.05021 | 
| idMR:
             | 
MR1600875 | 
| DOI:
             | 
10.21136/MB.1997.126153 | 
| . | 
| Date available:
             | 
2009-09-24T21:25:40Z | 
| Last updated:
             | 
2020-07-29 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/126153 | 
| . | 
| Reference:
             | 
[1] Buckley F., Harary F.: Distance in Graphs.Addison-Wesley, New York, 1990. Zbl 0688.05017 | 
| Reference:
             | 
[2] Buckley F., Lewinter M.: Graphs with diametral paths through distant central nodes.Math. Comput. Modelling 17 (1993), no. 11, 35-41. MR 1236507, 10.1016/0895-7177(93)90250-3 | 
| Reference:
             | 
[3] Buckley F., Lewinter M.: Minimal graph embeddings, eccentric vertices and the peripherian.Proc. Fifth Caribbean Conference on Combinatorics and Computing. University of the West Indies, 1988, pp. 72-84. | 
| Reference:
             | 
[4] Gliviak F.: On radially critical graphs.Recent Advances in Graph Theory, Proc. Int. Symp. Prague 1974, Academia Press, Prague, 1975, pp. 207-221. MR 0384613 | 
| Reference:
             | 
[5] Lewinter M.: Graphs with special distance properties.Quo Vadis Graph Theory? (J. Gimbel, J.W. Kennedy and L. V. Quintas, eds.). Annals of Discrete Mathematics Vol. 55, Elsevier, Amsterdam, 89-92. MR 1217982, 10.1016/S0167-5060(08)70378-9 | 
| . |