Article
Keywords:
PU-integral; PU-uniform integrability; $\mu$-uniform integrability
Summary:
We give a definition of uniform PU-integrability for a sequence of $\mu$-measurable real functions defined on an abstract metric space and prove that it is not equivalent to the uniform $\mu$-integrability.
References:
                        
[1] A. M. Bruckner: 
Differentiation of integrals. Supplement to the Amer. Math. Monthly 78 (1971), no. 9, 1-51. 
MR 0293044 | 
Zbl 0225.28002[2] R. A. Gordon: 
Another look at a convergence theorem for the Henstock integral. Real Anal. Exchange 15 (1989/90), 724-728. 
MR 1059433[3] R. A. Gordon: 
Riemann tails and the Lebesgue and the Henstock integrals. Real Anal. Exchange 17 (1991/92), 789-795. 
MR 1171422[4] G. Riccobono: 
A PU-integral on an abstract metric space. Math. Bohem. 122 (1997), 83-95. 
MR 1446402 | 
Zbl 0891.28003