[2] P. Drábek M. Kučera M. Míková: 
Bifurcation points of reaction-diffusion systems with unilateral conditions. Czechoslovak Math. J. 35 (1985), 639-660. 
MR 0809047[3] P. Drábek M. Kučera: 
Eigenvalues of inequalities of reaction-diffusion type and destabilizing effect of unilateral conditions. Czechoslovak Math. J. 36 (1986), 116-130. 
MR 0822872[5] G. Duvaut J. L. Lions: 
Les Inéquations en Mechanique et en Physique. Dunod, Paris, 1972. 
MR 0464857[6] J. Eisner M. Kučera: 
Spatial patterns for reaction-diffusion systems with conditions described by inclusions. Appl. of Math. 42 (1997), 421-449. 
DOI 10.1023/A:1022203129542 | 
MR 1475051[7] J. Eisner: 
Critical and bifurcation points of reaction-diffusion systems with conditions given by inclusions. Preprint Math. Inst. Acad. Sci. of the Czech Republic, No. 118, Praha, 1997. To appear in Nonlinear Anal. 
MR 1845578[8] J. Eisner M. Kučera: 
Spatial patterning in reaction-diffusion systems with nonstandard boundary conditions. Fields Inst. Commun. 25 (2000), 239-256. 
MR 1759546[9] J. Eisner: 
Reaction-diffusion systems: Destabilizing effect of conditions given by inclusions. Part II, Examples. To appear in Math. Bohem. 
MR 1826476[10] S. Fučík A. Kufner: 
Nonlinear Differential Equations. Elsevier, Amsterdam, 1980. 
MR 0558764[11] A. Gierer H. Meinhardt: 
A theory of biological pattern formation. Kybernetik 12 (1972), 30-39. 
DOI 10.1007/BF00289234[12] M. Kučera J. Neustupa: 
Destabilizing effect of unilateral conditions in reaction-diffusion systems. Comment. Math. Univ. Carol. 27 (1986), 171-187. 
MR 0843429[13] M. Kučera: 
Stability and bifurcation problems for reaction-diffusion system with unilateral conditions. Equadiff 6 (J. Vosmanský, M. Zlámal, eds.). Brno, Universita J. E. Purkyně, 1986, pp. 227-234. 
DOI 10.1007/BFb0076074 | 
MR 0877129[14] M. Kučera: 
A global continuation theorem for obtaining eigenvalues and bifurcation points. Czechoslovak Math. J. 38 (1988), 120-137. 
MR 0925946[15] M. Kučera M. Bosák: Bifurcation for quasi-variational inequalities of reaction diffusion type. Proceedings of EQUAM 92, International Conference on Differential Equations and Mathematical Modelling, Varenna 1992. SAACM 3, 1993, pp. 121-127.
[16] M. Kučera: 
Bifurcation of solutions to reaction-diffusion system with unilateral conditions. Navier-Stokes Equations and Related Topics (A. Sequeira, ed.). Plenum Press, New York, 1995, pp. 307-322. 
MR 1373224[18] M. Kučera: 
Reaction-diffusion systems: Stabilizing effect of conditions described by quasivariational inequalities. Czechoslovak Math. J. 47 (1997), 469-486. 
DOI 10.1023/A:1022411501260 | 
MR 1461426[19] M. Kučera: 
Bifurcation of solutions to reaction-diffusion system with conditions described by inequalities and inclusions. Nonlinear Anal. Theory Methods Appl. 30 (1997), 3683-3694. 
MR 1602910[21] H. Meinhardt: 
The algorithmic beauty of sea shells. Springer-Verlag, Berlin, 1996. 
MR 1325695[22] J. D. Murray: 
Mathematical Biology. Springer-Verlag, Berlin, 1993. 
MR 1239892[23] J. Nečas: 
Les méthodes directes en théorie des équations elliptiques. Praha, Academia, 1967. 
MR 0227584[26] P. Quittner: 
Bifurcation points and eigenvalues of inequalities of reaction-diffusion type. J. Reine Angew. Math. 380 (1987), 1-13. 
MR 0916198 | 
Zbl 0617.35053[27] A. M. Turing: The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. (1952), 37-72.