Article
Keywords:
linear Stieltjes integral equations; generalized linear differential equation; equation in Banach space
Summary:
This paper is a continuation of \cite9. In \cite9 results concerning equations of the form
x(t) = x(a) +\int_a^t \dd[A(s)]x(s) +f(t) - f(a)
were presented. The Kurzweil type Stieltjes integration in the setting of \cite6 for Banach space valued functions was used. Here we consider operator valued solutions of the homogeneous problem
\Phi(t) = I +\int_d^t \dd[A(s)]\Phi(s)
as well as the variation-of-constants formula for the former equation.
Related articles:
References:
                        
[1] Ju. L. Daletskij M. G. Krejn: 
Stability of Solutions of Differential Equations in Banach Spaces. Nauka, Moskva, 1970. (In Russian.) 
MR 0352638[2] N. Dunford J. T Schwartz: 
Linear Operators I. Interscience Publishers, New York, 1958. 
MR 0117523[3] Ch. S. Hönig: 
Volterra-Stieltjes Integral Equations. North-Holland Publ. Comp., Amsterdam, 1975. 
MR 0499969[4] J. Kurzweil: 
Nichtabsolut konvergente Integrale. B. G. Teubner Verlagsgesellschaft, Leipzig, 1980. 
MR 0597703 | 
Zbl 0441.28001[7] Š. Schwabik: 
Generalized Ordinary Differential Equations. World Scientific, Singapore, 1992. 
MR 1200241 | 
Zbl 0781.34003[8] Š. Schwabik M. Tvrdý O. Vejvoda: 
Differential and Integral Equations. Academia & Reidel, Praha & Dordrecht, 1979. 
MR 0542283[9] Š. Schwabik: 
Linear Stieltjes integral equations in Banach spaces. Math. Bohem. 124 (1999), 433-457. 
MR 1722877