Article
Keywords:
sequential convergence; multivalued convergence; lattice; distributive lattice
Summary:
The notion of sequential convergence on a lattice is defined in a natural way. In the present paper we investigate the system $Conv L$ of all sequential convergences on a lattice $L$.
References:
                        
[2] M. Harminc: 
Sequential convergences on abelian lattice-ordered groups. Conveгgence structures, 1984. Mathematical Research, Band 24, Akademie-Verlag Berlin (1985), 153-158. 
MR 0835480[3] M. Harminc: 
Sequential convergences on lattice ordered gгoups. Czechoslovak Math. J. 39 (1989), 232-238. 
MR 0992130[4] M. Harminc: 
The cardinality of the system of all sequential convergences on an abelian lattice ordered group. Czechoslovak Math. J. 57 (1987), 533-546. 
MR 0913986[5] J. Jakubík: 
Convergences and complete distributivity of lattice ordered groups. Math. Slovaca 38 (1988), 269-272. 
MR 0977905[6] J. Jakubík: 
Lattice ordered having a largest convergence. Czechoslovak Math. Ј. 39 (1989), 717-729. 
MR 1018008[7] J. Jakubík: 
On some types of kernels of a convergence l-group. Czechoslovak Math. Ј. 39 (1989), 239-247. 
MR 0992131[8] J. Jakubík: 
On summability in convergence l-gгoups. Časopis pěst. mat. 113 (1988), 286-292. 
MR 0960765[9] J. Jakubík: 
Sequential convergences in Boolean algebras. Czechoslovak Math. Ј. 38 (1988), 520-530. 
MR 0950306[10] P. Mikusiński: Problems posed at the conference. Proc. Conf. on Convergence, Szczyгk 1979, Katowice (1980), 110-112.
[11] E. Pap: 
Funkcionalna analiza, nizovne konvergenciji, neki principi funkcionalne analize. Novi Sad (1982). 
MR 0683763