[1] H. Poincaré: Leçons sur les méthodes nouvelles de la mécanique céleste. Gauthier-Villars, Paris, 1892.
[2] E. Cartan: 
Leçons sur les invariants integraux. Hermann, Paris, 1922. 
MR 0355764 
[4] J. M. Souriau: 
Structure des Systemes Dynamique. Dunod, Paris, 1970. 
MR 0260238 
[6] D. Krupka: 
A map associated to the Lepagean forms of the calculus of variations in fibered manifolds. Czechoslovak Math. J. 27 (1977), 114-118. 
MR 0431272 
[9] H. Rund: 
A Cartan form for the field theory of Caratheodory in the calculus of variations of multiple integrals. Lecture Notes in Pure and Appl. Math. 100 (1985), 455-469. 
MR 0822534 | 
Zbl 0578.49025 
[10] P. L. Garcia: 
The Poincare-Cartan invariant in the calculus of variations. Symp. Math. 14 (1974), 219-246. 
MR 0406246 | 
Zbl 0303.53040 
[11] H. Goldschmits, S. Sternberg: 
The Hamilton-Cartan formalism in the calculus of variations. Ann. Inst. Fourier 23 (1973), 203-267. 
DOI 10.5802/aif.451 | 
MR 0341531 
[12] M. J. Gotay: 
A multisymplectic framework for classical field theory and the calculus of variations I. Covariant Hamiltonian formalism. Mechanics, Analysis and Geometry: 200 Years after Lagrange (M. Francaviglia; D. D. Holms, eds.). North-Holland, Amsterdam, 1990, pp. 203-235. 
MR 1098517 
[15] W. M. Tulczjew: 
The Lagrange complex. Bull. Soc. Math. France 105 (1977), 419-431. 
MR 0494272 
[16] W. M. Tulcziew: 
The Euler-Lagrange resolution. International Colloquium on Differential Geometrical Methods in Mathematical Physics, Aix-en-Province, 1979, Lecture Notes in Math. 836. Springer, Berlin, 1980, pp. 22-48. 
MR 0607685 
[17] P. J. Olver: 
Applications of Lie Groups to Differential Equations. Springer, Berlin, 1986. 
MR 0836734 | 
Zbl 0588.22001 
[19] H. Rund: 
Integral formulae associated with the Euler-Lagrange operator of multiple integral problems in the calculus of variation. Aequationes Math. 11 (1974), 212-229. 
DOI 10.1007/BF01834920 | 
MR 0361971 
[21] S. Hojman: 
Problem of the identically vanishing Euler-Lagrange derivatives in field theory. Phys. Rev. D 27 (1983), 451-453. 
DOI 10.1103/PhysRevD.27.451 
[25] D. R. Grigore: 
A generalized Lagrangian formalism in particle mechanics and classical field theory. Fortschr. Phys. 41 (1993), 567-617. 
MR 1247114 
[26] O. T. Popp: Cohomology for Lagrangian systems and Noetherian symmetries. Submitted.
[27] J. M. Lévy-Leblond: 
Group-theoretical foundation of classical mechanics: The Lagrangian gauge problem. Comment. Math. Phys. 12 (1969), 64-79. 
DOI 10.1007/BF01646436 | 
MR 0249006