Previous |  Up |  Next


accessibility; Banach spaces; conjugate operator ideals; Hilbert space factorization; Grothendieck’s inequality; tensor norms; tensor stability
In addition to Pisier’s counterexample of a non-accessible maximal Banach ideal, we will give a large class of maximal Banach ideals which are accessible. The first step is implied by the observation that a “good behaviour” of trace duality, which is canonically induced by conjugate operator ideals can be extended to adjoint Banach ideals, if and only if these adjoint ideals satisfy an accessibility condition (theorem 3.1). This observation leads in a natural way to a characterization of accessible injective Banach ideals, where we also recognize the appearance of the ideal of absolutely summing operators (prop. 4.1). By the famous Grothendieck inequality, every operator from $L_1$ to a Hilbert space is absolutely summing, and therefore our search for such ideals will be directed towards Hilbert space factorization—via an operator version of Grothendieck’s inequality (lemma 4.2). As a consequence, we obtain a class of injective ideals, which are “quasi-accessible”, and with the help of tensor stability, we improve the corresponding norm inequalities, to get accessibility (theorem 4.1 and 4.2). In the last chapter of this paper we give applications, which are implied by a non-trivial link of the above mentioned considerations to normed products of operator ideals.
[cdr] B. Carl, A. Defant, and M. S. Ramanujan: On tensor stable operator ideals. Michigan Math. J. 36 (1989), 63–75. DOI 10.1307/mmj/1029003882 | MR 0989937
[d] A. Defant: Produkte von Tensornormen. Habilitationsschrift. Oldenburg 1986.
[df] A. Defant and K. Floret: Tensor Norms and Operator Ideals. North-Holland Amsterdam, London, New York, Tokio, 1993. MR 1209438
[gl] J. E. Gilbert and T. Leih: Factorization, tensor products and bilinear forms in Banach space theory. Notes in Banach spaces, Univ. of Texas Press, Austin, 1980, pp. 182–305. MR 0606223
[glr] Y. Gordon, D. R. Lewis, and J. R Retherford: Banach ideals of operators with applications. J. Funct. Analysis 14 (1973), 85–129. DOI 10.1016/0022-1236(73)90031-1 | MR 0380488
[gr] A. Grothendieck: Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. São Paulo 8 (1956), 1–79. MR 0094682 | Zbl 0074.32303
[j] H. Jarchow: Locally convex spaces. Teubner, 1981. MR 0632257 | Zbl 0466.46001
[jo] H. Jarchow and R. Ott: On trace ideals. Math. Nachr. 108 (1982), 23–37. DOI 10.1002/mana.19821080103 | MR 0695114
[l] H. P. Lotz: Grothendieck ideals of operators in Banach spaces. Lecture notes, Univ. Illinois, Urbana, 1973.
[lr] J. Lindenstrauss and H. P. Rosenthal: The Lp-spaces. Israel J. Math. 7 (1969), 325–349. DOI 10.1007/BF02788865 | MR 0270119
[oe1] F. Oertel: Konjugierte Operatorenideale und das ${\mathcal A}$-lokale Reflexivitätsprinzip. Dissertation. Kaiserslautern, 1990.
[oe2] F. Oertel: Operator ideals and the principle of local reflexivity. Acta Universitatis Carolinae—Mathematica et Physica 33 (1992), no. 2, 115–120. MR 1287232 | Zbl 0803.47038
[p1] A. Pietsch: Operator Ideals. North-Holland Amsterdam, London, New York, Tokio, 1980. MR 0582655 | Zbl 0455.47032
[p2] A. Pietsch: Eigenvalues and s-numbers. Cambridge Studies in Advanced Mathematics 13 (1987). MR 0890520 | Zbl 0615.47019
Partner of
EuDML logo