| Title: | On $\sigma$-discrete Borel mappings via quasi-metrics (English) | 
| Author: | Künzi, Hans-Peter A. | 
| Author: | Wajch, Eliza | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 48 | 
| Issue: | 3 | 
| Year: | 1998 | 
| Pages: | 439-455 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Keyword: | quasi-metric | 
| Keyword: | continuous map | 
| Keyword: | Borel map | 
| Keyword: | $\sigma $-discrete map | 
| Keyword: | $\sigma $-discretely decomposable family | 
| Keyword: | absolutely Borel set | 
| Keyword: | absolutely analytic space | 
| MSC: | 26A21 | 
| MSC: | 28A05 | 
| MSC: | 54E35 | 
| MSC: | 54H05 | 
| idZBL: | Zbl 0949.54036 | 
| idMR: | MR1637926 | 
| . | 
| Date available: | 2009-09-24T10:15:14Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/127431 | 
| . | 
| Reference: | [1] R. Engelking: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321 | 
| Reference: | [2] W. G. Fleissner: An axiom for nonseparable Borel Theory.Trans. Amer. Math. Soc. 251 (1979), 309–328. Zbl 0428.03044, MR 0531982, 10.1090/S0002-9947-1979-0531982-9 | 
| Reference: | [3] W. G. Fleissner, R. W. Hansell and H. J. K. Junnila: PMEA implies Proposition P.Topology Appl. 13 (1982), 255–262. MR 0651508, 10.1016/0166-8641(82)90034-7 | 
| Reference: | [4] P. Fletcher and W. F. Lindgren: Quasi-uniform Spaces.Marcel Dekker, New York, 1982. MR 0660063 | 
| Reference: | [5] D. H. Fremlin, R. W. Hansell and H. J. K. Junnila: Borel functions of bounded class.Trans. Amer. Math. Soc. 277 (1983), 835–849. MR 0694392, 10.1090/S0002-9947-1983-0694392-0 | 
| Reference: | [6] R. W. Hansell: Borel measurable mappings for nonseparable metric spaces.Trans. Amer. Math. Soc. 161 (1971), 145–169. Zbl 0232.28007, MR 0288228, 10.1090/S0002-9947-1971-0288228-1 | 
| Reference: | [7] R. W. Hansell: On Borel mappings and Baire functions.Trans. Amer. Math. Soc. 194 (1974), 195–211. Zbl 0295.54047, MR 0362270, 10.1090/S0002-9947-1974-0362270-7 | 
| Reference: | [8] H. J. K. Junnila: Neighbournets.Pacific J. Math. 76 (1978), 83–108. MR 0482677 | 
| Reference: | [9] H. J. K. Junnila and H. P. A. Künzi: Characterizations of absolute $F_{{ \sigma }{ \delta }}$-sets.Czech Math. Journal (to appear). MR 1614072 | 
| Reference: | [10] H. P. A. Künzi: On strongly quasi-metrizable spaces.Arch. Math. (Basel) 41 (1983), 57–63. 10.1007/BF01193823 | 
| Reference: | [11] H. P. A. Künzi and E. Wajch: Borel classification via quasi-metrics.Topology Appl. 77 (1997), 183–192. MR 1451651, 10.1016/S0166-8641(96)00141-1 | 
| Reference: | [12] K. Kuratowski: Topology, vol. I.Academic Press, New York and London, 1966. Zbl 0158.40901, MR 0217751 | 
| Reference: | [13] E. P. Lane: Bitopological spaces and quasi-uniform spaces.Proc. London Math. Soc. 17 (1967), 241–256. Zbl 0152.21101, MR 0205221 | 
| Reference: | [14] S. Romaguera and S. Salbany: On bicomplete quasi-pseudometrizability.Topology Appl. 50 (1993), 283–289. MR 1227555, 10.1016/0166-8641(93)90026-A | 
| Reference: | [15] A. H. Stone: Analytic sets in non-separable metric spaces, Part 5 of “Analytic Sets” (C. A. Rogers et al.).Academic Press, London, 1980. | 
| . |