Previous |  Up |  Next


We show that if a real $n \times n$ non-singular matrix ($n \ge m$) has all its minors of order $m-1$ non-negative and has all its minors of order $m$ which come from consecutive rows non-negative, then all $m$th order minors are non-negative, which may be considered an extension of Fekete’s lemma.
[1] I. Chon: Lie group and control theory. Ph.D. Thesis, Louisiana State University, 1988.
[2] M. Fekete: Ueber ein Problem von Laguerre. Rendiconti del Circolo Matematico di Palermo 34 (1912), 92–93.
[3] F. R. Gantmacher: The Theory of Matrices vol. 1 and vol. 2. Chelsea Publ. Comp., New York, 1960. MR 1657129
[4] S. Karlin: Total Positivity vol. 1. Stanford University Press, 1968. MR 0230102
[5] C. Loewner: On totally positive matrices. Math. Zeitschr. 63 (1955), 338–340. DOI 10.1007/BF01187945 | MR 0073657 | Zbl 0068.25004
[6] G. Pólya and G. Szegö: Aufgaben and Lehrsätze aus der Analysis vol. 2. Springer-Velag, 1964.
[7] A. M. Whitney: A reduction theorem for totally positive matrices. J. d’Analyse Math. Jerusalem 2 (1952), 88–92. DOI 10.1007/BF02786969 | MR 0053173 | Zbl 0049.17104
Partner of
EuDML logo