| Title: | Multi-faithful spanning trees of infinite graphs (English) | 
| Author: | Polat, Norbert | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 51 | 
| Issue: | 3 | 
| Year: | 2001 | 
| Pages: | 477-492 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | For an end $\tau $ and a tree $T$ of a graph $G$ we denote respectively by $m(\tau )$ and $m_{T}(\tau )$ the maximum numbers of pairwise disjoint rays of $G$ and $T$ belonging to  $\tau $, and we define $\mathop {\mathrm tm}(\tau ) := \min \lbrace m_{T}(\tau )\: T \text{is} \text{a} \text{spanning} \text{tree} \text{of} G \rbrace $. In this paper we give partial answers—affirmative and negative ones—to the general problem of determining if, for a function $f$ mapping every end $\tau $ of $G$ to a cardinal $f(\tau )$ such that $\mathop {\mathrm tm}(\tau ) \le f(\tau ) \le m(\tau )$, there exists a spanning tree $T$ of $G$ such that $m_{T}(\tau ) = f(\tau )$ for every end $\tau $ of  $G$. (English) | 
| Keyword: | infinite graph | 
| Keyword: | end | 
| Keyword: | end-faithful | 
| Keyword: | spanning tree | 
| Keyword: | multiplicity | 
| MSC: | 05C05 | 
| MSC: | 05C99 | 
| idZBL: | Zbl 1079.05516 | 
| idMR: | MR1851542 | 
| . | 
| Date available: | 2009-09-24T10:44:31Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/127664 | 
| . | 
| Reference: | [1] N.  Bourbaki: Topologie Générale. Chapitre 9.Hermann, Paris, 1958. MR 0173226 | 
| Reference: | [2] H.  Freudenthal: Über die Enden diskreter Räume und Gruppen.Comment. Math. Helv. 17 (1944), 1–38. MR 0012214, 10.1007/BF02566233 | 
| Reference: | [3] G.  Hahn and J.  Širáň: Three remarks on end-faithfulness.Finite and Infinite Combinatorics in Sets and Logic, N.  Sauer et al. (eds.), Kluwer, Dordrecht, 1993, pp. 125–133. MR 1261200 | 
| Reference: | [4] R.  Halin: Über unendliche Wege in Graphen.Math. Ann. 157 (1964), 125–137. Zbl 0125.11701, MR 0170340, 10.1007/BF01362670 | 
| Reference: | [5] R.  Halin: Über die Maximalzahl fremder unendlicher Wege in Graphen.Math. Nachr. 30 (1965), 63–85. Zbl 0131.20904, MR 0190031, 10.1002/mana.19650300106 | 
| Reference: | [6] R.  Halin: Die Maximalzahl fremder zweiseitig unendliche Wege in Graphen.Math. Nachr. 44 (1970), 119–127. MR 0270953, 10.1002/mana.19700440109 | 
| Reference: | [7] H.  Hopf: Enden offener Raüme und unendliche diskontinuierliche Gruppen.Comment. Math. Helv. 15 (1943), 27–32. MR 0007646 | 
| Reference: | [8] H. A.  Jung: Connectivity in Infinite Graphs.Studies in Pure Mathematics, L. Mirsky (ed.), Academic Press, New York-London, 1971, pp. 137–143. Zbl 0217.02603, MR 0278982 | 
| Reference: | [9] F.  Laviolette and N.  Polat: Spanning trees of countable graphs omitting sets of dominated ends.Discrete Math. 194 (1999), 151–172. MR 1657074 | 
| Reference: | [10] N.  Polat: Développements terminaux des graphes infinis. I. Arbres maximaux coterminaux.Math. Nachr. 107 (1982), 283–314. Zbl 0536.05043, MR 0695755, 10.1002/mana.19821070124 | 
| Reference: | [11] N.  Polat: Développements terminaux des graphes infinis. III.  Arbres maximaux sans rayon, cardinalité maximum des ensembles disjoints de rayons.Math. Nachr. 115 (1984), 337–352. Zbl 0536.05045, MR 0755288, 10.1002/mana.19841150126 | 
| Reference: | [12] N.  Polat: Spanning trees of infinite graphs.Czechoslovak Math. J. 41 (1991), 52–60. Zbl 0793.05054, MR 1087622 | 
| Reference: | [13] N.  Polat: Ends and multi-endings. I.J.  Combin. Theory Ser. B 67 (1996), 86–110. Zbl 0855.05051, MR 1385385, 10.1006/jctb.1996.0035 | 
| Reference: | [14] N.  Polat: Ends and multi-endings.  II.J.  Combin. Theory Ser. B 68 (1996), 56–86. Zbl 0855.05052, MR 1405706, 10.1006/jctb.1996.0057 | 
| Reference: | [15] P.  Seymour and R.  Thomas: An end-faithful spanning tree counterexample.Discrete Math. 95 (1991). MR 1045600, 10.1016/0012-365X(91)90344-2 | 
| Reference: | [16] J.  Širáň: End-faithful forests and spanning trees in infinite graphs.Discrete Math. 95 (1991), 331–340. MR 1141946, 10.1016/0012-365X(91)90345-3 | 
| Reference: | [17] C.  Thomassen: Infinite connected graphs with no end-preserving spanning trees.J.  Combin. Theory Ser. B 54 (1992), 322–324. Zbl 0753.05030, MR 1152455, 10.1016/0095-8956(92)90059-7 | 
| Reference: | [18] B.  Zelinka: Spanning trees of locally finite graphs.Czechoslovak Math. J. 39 (1989), 193–197. Zbl 0679.05023, MR 0992126 | 
| . |