Full entry |
PDF
(0.3 MB)
Feedback

$MV$-algebra; state homomorphism; $\sigma $-closed maximal ideal

References:

[1] F. Chovanec: **States and observables on $MV$ algebras**. Tatra Mt. Math. Publ. 3 (1993), 55–64. MR 1278519 | Zbl 0799.03074

[2] P. Conrad: **Lattice Ordered Groups**. Tulane University, 1970. Zbl 0258.06011

[3] D. Gluschankof: **Cyclic ordered groups and $MV$-algebras**. Czechoslovak Math. J. 43 (1993), 249–263. MR 1211747 | Zbl 0795.06015

[4] A. Goetz: **On weak automorphisms and weak homomorphisms of abstract algebras**. Coll. Math. 14 (1966), 163–167. DOI 10.4064/cm-14-1-163-167 | MR 0184889

[5] J. Jakubík: **Direct product decompositions of $MV$-algebras**. Czechoslovak Math. J. 44 (1994), 725–739.

[6] J. Jakubík: **On archimedean $MV$-algebras**. Czechoslovak Math. J. 48 (1998), 575–582. DOI 10.1023/A:1022436113418 | MR 1637871

[7] J. Jakubík: **Subdirect product decompositions of $MV$-algebras**. Czechoslovak Math. J. 49(124) (1999), 163–173. DOI 10.1023/A:1022472528113 | MR 1676813

[8] D. Mundici: **Interpretation of $AFC^*$-algebras in Łukasziewicz sentential calculus**. J. Funct. Anal. 65 (1986), 15–53. DOI 10.1016/0022-1236(86)90015-7 | MR 0819173

[9] D. Mundici: **Averaging the truth-value in Łukasziewicz logic**. Studia Logica 55 (1995), 113–127. DOI 10.1007/BF01053035 | MR 1348840

[10] D. Mundici: **Uncertainty measures in $MV$-algebras, and states of $AFC^*$-algebras**. Notas Soc. Mat. Chile 15 (1996), 42–54.

[11] B. Riečan: **Fuzzy connectives and quantum models**. In: Cybernetics and System Research 92, R. Trappl (ed.), World Scientific Publ., Singapore, 1992, pp. 335–338.

[12] B. Riečan: **On limit theorems in fuzzy quantum spaces**. (Submitted).

[13] B. Riečan and T. Neubrunn: **Integral, Measure and Ordering**. Kluwer Publ., Dordrecht, 1997. MR 1489521