[2] Z.  Brzeźniak and S.  Peszat: 
Maximal inequalities and exponential estimates for stochastic convolutions in Banach spaces. Stochastic Processes, Physics and Geometry: New Interplays, I (Leipzig, 1999), Amer.  Math.  Soc., Providence, 2000, pp. 55–64. 
MR 1803378[3] G. Da Prato, M.  Iannelli and L.  Tubaro: 
Semi-linear stochastic differential equations in Hilbert spaces. Boll. Un. Mat. Ital.  A (5) 16 (1979), 168–177. 
MR 0530145[4] G. Da Prato, S.  Kwapień and J.  Zabczyk: 
Regularity of solutions of linear stochastic equations in Hilbert spaces. Stochastics 23 (1987), 1–23. 
MR 0920798[6] G.  Da Prato and J.  Zabczyk: 
Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge, 1992. 
MR 1207136[12] J. Seidler: 
Da Prato-Zabczyk’s maximal inequality revisited I. Math. Bohem. 118 (1993), 67–106. 
MR 1213834 | 
Zbl 0785.35115[13] J. Seidler and T. Sobukawa: Exponential integrability of stochastic convolutions. Submitted.
[14] B. Sz.-Nagy: 
Sur les contractions de l’espace de Hilbert. Acta Sci. Math. Szeged 15 (1953), 87–92. 
MR 0058128 | 
Zbl 0052.12203[15] B. Sz.-Nagy: 
Transformations de l’espace de Hilbert, fonctions de type positif sur un groupe. Acta Sci. Math. Szeged 15 (1954), 104–114. 
MR 0060740[16] B. Sz.-Nagy and C. Foiaş: 
Harmonic Analysis of Operators on Hilbert Space. North-Holland, Amsterdam, 1970. 
MR 0275190