| Title:
|
A constructive integral equivalent to the integral of Kurzweil (English) |
| Author:
|
Federson, M. |
| Language:
|
English |
| Journal:
|
Czechoslovak Mathematical Journal |
| ISSN:
|
0011-4642 (print) |
| ISSN:
|
1572-9141 (online) |
| Volume:
|
52 |
| Issue:
|
2 |
| Year:
|
2002 |
| Pages:
|
365-367 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
We slightly modify the definition of the Kurzweil integral and prove that it still gives the same integral. (English) |
| Keyword:
|
Kurzweil integral |
| Keyword:
|
generalized Riemann integral |
| MSC:
|
26A39 |
| MSC:
|
26B99 |
| MSC:
|
26E20 |
| MSC:
|
46G10 |
| idZBL:
|
Zbl 1011.26008 |
| idMR:
|
MR1905443 |
| . |
| Date available:
|
2009-09-24T10:51:49Z |
| Last updated:
|
2020-07-03 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127724 |
| . |
| Reference:
|
[1] R. Henstock: The General Theory of Integration.Clarendon Press, Oxford, 1991. Zbl 0745.26006, MR 1134656 |
| Reference:
|
[2] J. Kurzweil: Generalized ordinary differential equations and continuous dependance on a parameter.Czechoslovak Math. J. 7 (1957), 418–446. MR 0111875 |
| Reference:
|
[3] J. Kurzweil and J. Jarník: Differentiability and integrability in $n$ dimensions with respect to $\alpha $-regular intervals.Res. Math. 21 (1992), 138–151. MR 1146639, 10.1007/BF03323075 |
| . |