[2] B. A. Barnes, G. J.  Murphy, M. R. F. Smyth and T. T.  West: 
Riesz and Fredholm Theory in Banach Algebras. Pitman, Boston-London-Melbourne, 1982. 
MR 0668516 
[7] R. E. Harte: 
Fredholm, Weyl and Browder theory. Proc. Royal Irish Academy Vol.  85A, 1985, pp. 151–176. 
MR 0845539 | 
Zbl 0567.47001 
[8] R. E.  Harte: 
Invertibility and Singularity for Bounded Linear Operators. Marcel Dekker, New York-Basel, 1988. 
MR 0920812 | 
Zbl 0636.47001 
[10] R. E. Harte and H.  Raubenheimer: 
Fredholm, Weyl and Browder theory III. Proc. Royal Irish Academy Vol.  95A, 1995, pp. 11–16. 
MR 1369040 
[11] R. E.  Harte and A. W. Wickstead: 
Boundaries, hulls and spectral mapping theorems. Proceedings of the Royal Irish Academy Vol 81A, 1981, pp. 201–208. 
MR 0654819 
[12] V.  Kordula and V.  Müller: 
Axiomatic theory of spectrum. Studia Math. 119 (1996), 109–128. 
MR 1391471 
[13] L.  Lindeboom and H. Raubenheimer: 
A note on the singular spectrum. Extracta Math. 13 (1998), 349–357. 
MR 1695568 
[17] T.  Mouton and H.  Raubenheimer: 
More Fredholm theory relative to a Banach algebra homomorphism. Proceedings of the Royal Irish Academy Vol. 93A, 1993, pp. 17–25. 
MR 1241836 
[19] J.  Puhl: 
The trace of finite and nuclear elements in Banach algebras. Czechoslovak Math. J. 28(103) (1978), 656–676. 
MR 0506439 | 
Zbl 0394.46041 
[21] A. E.  Taylor and D. C.  Lay: 
Introduction to Functional Analysis. 2nd ed. John Wiley, New York, 1980. 
MR 0564653