Article
Keywords:
Chebyshev centers; proximinal hyperplanes; space $c_0$
Summary:
We give a full characterization of the closed one-codimensional subspaces of  $c_0$, in which every bounded set has a Chebyshev center. It turns out that one can consider equivalently only finite sets (even only three-point sets) in our case, but not in general. Such hyperplanes are exactly those which are either proximinal or norm-one complemented.
References:
                        
[1] D. Amir: 
Best simultaneous approximation (Chebyshev centers). Parametric Optimization and Approximation (Oberwolfach 1983), Internat. Ser. Numer. Math. 72, B. Brosowski, F. Deutsch (eds.), Birkhauser-Verlag, Basel, 1985, pp. 19–35. 
MR 0882194 | 
Zbl 0563.41021 
[3] D.  Amir, J.  Mach and K. Saatkamp: 
Existence of Chebyshev centers, best $n$-nets and best compact approximants. Trans. Amer. Math. Soc. 271 (1982), 513–524. 
MR 0654848 
[4] J.  Blatter and E. W.  Cheney: 
Minimal projections on hyperplanes in sequence spaces. Ann. Mat. Pura. Appl.  101 (1974), 215–227. 
DOI 10.1007/BF02417105 | 
MR 0358179 
[5] A. L.  Garkavi: 
The best possible net and the best possible cross section of a set in a normed space. Izv. Akad. Nauk. SSSR 26 (1962), 87–106. (Russian) 
MR 0136969 | 
Zbl 0158.13602 
[6] R. B. Holmes: 
A Course in Optimization and Best Approximation. Lecture Notes in Math. 257. Springer-Verlag, 1972. 
MR 0420367 
[7] L. Veselý: 
Generalized centers of finite sets in Banach spaces. Acta Math. Univ. Comenian. 66 (1997), 83–115. 
MR 1474552 
[8] L.  Veselý: 
A Banach space in which all compact sets, but not all bounded sets, admit Chebyshev centers. Arch. Math (to appear). 
MR 1967268 
[9] V. N. Zamjatin: 
The Chebyshev center in hyperspaces of continuous functions. Funktsional’nyj Analiz, vol. 12, A. V. Štraus (ed.), Ul’janovsk. Gos. Ped. Inst., Ul’janovsk, 1979, pp. 56–68. (Russian) 
MR 0558342