Previous |  Up |  Next


G-space; invariant metric; slice
Let $X$ be a $G$-space such that the orbit space $X/G$ is metrizable. Suppose a family of slices is given at each point of $X$. We study a construction which associates, under some conditions on the family of slices, with any metric on $X/G$ an invariant metric on $X$. We show also that a family of slices with the required properties exists for any action of a countable group on a locally compact and locally connected metric space.
[1] D. W.  Alekseevski: On perfect actions of groups. Uspiekhi Math. Nauk 34 (1979), 219–220. (Russian) MR 0525656
[2] G.  Birkhoff: A note on topological groups. Compositio Math. 3 (1936), 427–430. MR 1556955 | Zbl 0015.00702
[3] R. Engelking: General Topology. PWN, Warszawa, 1977. MR 0500780 | Zbl 0373.54002
[4] S.  Kakutani: Über die Metrization der topologischen Gruppen. Proc. Imp. Acad. Japan 12 (1936), 82–84. DOI 10.3792/pia/1195580206 | MR 1568424
[5] J. L. Koszul: Lectures on Groups of Transformation. Tate Institute, Bombay, 1965. MR 0218485
[6] D. Montgomery and L. Zippin: Topological Transformation Groups. Interscience, London, New York, 1995. MR 0073104
[7] M. H.  Newman: A theorem on periodic transformations of spaces. Quart. J. Math. 2 (1931), 1–8. DOI 10.1093/qmath/os-2.1.1-a | Zbl 0001.22703
[8] R. S. Palais: On the existence of slices for actions of non-compact Lie groups. Ann. Math. 73 (1961), 295–323. DOI 10.2307/1970335 | MR 0126506 | Zbl 0103.01802
[9] P. A. Smith: Transformations of finite period III. Ann. Math. 42 (1941), 446–458. DOI 10.2307/1968910 | MR 0004128
Partner of
EuDML logo